Semi-rigid analogues of the calcium antagonist verapamil: A molecular modelling study

[1]  A. Chiarini,et al.  Verapamil analogues with restricted molecular flexibility: synthesis and pharmacological evaluation of the four isomers of alpha-[1-[3-[N-[1- [2-(3,4-dimethoxyphenyl)ethyl]]-N-methylamino]cyclohexyl]]-alpha- isopropyl-3,4-dimethoxybenzene-acetonitrile. , 1993, Journal of medicinal chemistry.

[2]  E. Uriarte,et al.  Structure-activity relationships in verapamil and analogues using molecular mechanics calculations , 1992 .

[3]  A. Chiarini,et al.  Verapamil analogues with restricted molecular flexibility. , 1991, Journal of medicinal chemistry.

[4]  C. Botré,et al.  Nuclear magnetic resonance investigations of calcium antagonist drugs. II: Conformational and dynamic features of verapamil in [2H6]DMSO. , 1991, Journal of pharmaceutical sciences.

[5]  A. Carpy,et al.  Antagonistes calciques. I. Remplacement du groupe diméthoxy-3,4 phényléthyle du vérapamil , 1990 .

[6]  P. Luger,et al.  Specific bradycardic agents. 1. Chemistry, pharmacology, and structure-activity relationships of substituted benzazepinones, a-new class of compounds exerting antiischemic properties. , 1990, Journal of medicinal chemistry.

[7]  W. Koch,et al.  Toward an understanding of the dihydropyridine-sensitive calcium channel. , 1990, Biochemical pharmacology.

[8]  R. Budriesi,et al.  Negative inotropic and calcium antagonistic activity of alkyl and arylalkyl phosphonates. , 1989, Farmaco.

[9]  R. Mannhold,et al.  A search for calcium-channel activators in the verapamil series. , 1989, Farmaco.

[10]  G. Retzinger,et al.  Evidence that uncharged verapamil inhibits myocardial contractility. , 1987, The Journal of pharmacology and experimental therapeutics.

[11]  P. Chiang,et al.  6-Methyl-6-azabicyclo[3.2.1]octan-3 alpha-ol 2,2-diphenylpropionate (azaprophen), a highly potent antimuscarinic agent. , 1987, Journal of medicinal chemistry.

[12]  G. Retzinger,et al.  Ionization and surface properties of verapamil and several verapamil analogues. , 1986, Journal of pharmaceutical sciences.

[13]  J. Robertson High pressure in science and technology. Part 1. Collective phenomena and transport properties edited by C. Homan, R. K. MacCrone and E. whalley , 1985 .

[14]  J. Leger,et al.  Structure of α‐isopropyl‐α‐[(N‐methyl‐N‐homoveratryl)‐γ‐aminopropyl]‐3,4‐dimethoxyphenylacetonitrile hydrochloride, verapamil, C27H38N2O4.HCl , 1985 .

[15]  J. P. Long,et al.  Conformationally restricted congeners of dopamine derived from 2-aminoindan. , 1982, Journal of medicinal chemistry.

[16]  J. Cannon,et al.  Cerebral dopamine agonist properties of some 2-aminotetralin derivatives after peripheral and intracerebral administration. , 1977, Journal of medicinal chemistry.

[17]  Nayler Wg Classification and tissue selectivity of calcium antagonists. , 1990 .

[18]  H. Höltje,et al.  Conformational analysis on calcium channel active diphenylalkylamines, diphenylbutylpiperidines, phenylalkylamines, and perhexiline , 1989 .

[19]  C. Melchiorre,et al.  RECENT ADVANCES IN RECEPTOR CHEMISTRY , 1988 .

[20]  Chi-Ho Lee,et al.  Synthesis and Determination of the Absolute Stereochemistry of the Enantiomers of 3-Substituted 1,2,3,4-Tetrahydroisoquinolines Related to the Calcium Antagonist Verapamil , 1987 .

[21]  M. Frey,et al.  Calcium antagonists: mechanisms and therapeutic uses , 1984 .