Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours

[1]  I. Pollack,et al.  LGG-04. A PHASE II RE-TREATMENT STUDY OF SELUMETINIB FOR RECURRENT OR PROGRESSIVE PEDIATRIC LOW-GRADE GLIOMA (pLGG): A PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) STUDY , 2020, Neuro-Oncology.

[2]  P. Sorensen,et al.  Ewing Sarcoma , 2020, Sarcomas.

[3]  R. Russell,et al.  EZHIP / CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. , 2019, Neuro-oncology.

[4]  S. Grupp,et al.  Naïve T-cell Deficits at Diagnosis and after Chemotherapy Impair Cell Therapy Potential in Pediatric Cancers. , 2019, Cancer discovery.

[5]  P. Agius,et al.  Immunogenic neoantigens derived from gene fusions stimulate T cell responses , 2019, Nature Medicine.

[6]  Katharine L. Diehl,et al.  PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism , 2019, Nature Communications.

[7]  K. Stegmaier,et al.  Ushering in the next generation of precision trials for pediatric cancer , 2019, Science.

[8]  Jessica L. Davis,et al.  TRK Fusion Cancers in Children: A Clinical Review and Recommendations for Screening. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  P. Northcott,et al.  Medulloblastoma , 2019, Nature Reviews Disease Primers.

[10]  T. Chan,et al.  The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy , 2019, Nature Reviews Cancer.

[11]  Thomas P. Howard,et al.  MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. , 2019, Cancer research.

[12]  G. Curigliano,et al.  Safety and Tolerability of Phosphatidylinositol-3-Kinase (PI3K) Inhibitors in Oncology , 2019, Drug Safety.

[13]  P. Sorensen,et al.  CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors , 2019, Clinical Cancer Research.

[14]  C. Brennan,et al.  Tumor mutational load predicts survival after immunotherapy across multiple cancer types , 2019, Nature Genetics.

[15]  S. PlantAshley,et al.  Immunotherapy and the Immune Infiltrate in Pediatric Brain Tumors: An Illustration and Review of the Unique Challenges Facing Immunotherapy for Pediatric Oncology , 2018 .

[16]  Plant Ashley S,et al.  Immunotherapy and the Immune Infiltrate in Pediatric Brain Tumors: An Illustration and Review of the Unique Challenges Facing Immunotherapy for Pediatric Oncology , 2018, International Journal of Immunology and Immunotherapy.

[17]  F. Westermann,et al.  A mechanistic classification of clinical phenotypes in neuroblastoma , 2018, Science.

[18]  Dirk Mossmann,et al.  mTOR signalling and cellular metabolism are mutual determinants in cancer , 2018, Nature Reviews Cancer.

[19]  J. Sicklick,et al.  Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. , 2018, JCO precision oncology.

[20]  David T. W. Jones,et al.  A biobank of patient-derived pediatric brain tumor models , 2018, Nature Medicine.

[21]  David T. W. Jones,et al.  Extensive Molecular and Clinical Heterogeneity in Patients With Histologically Diagnosed CNS-PNET Treated as a Single Entity: A Report From the Children's Oncology Group Randomized ACNS0332 Trial. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  R. Siebert,et al.  Family-based germline sequencing in children with cancer , 2018, Oncogene.

[23]  Jill S Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015. , 2018, Neuro-oncology.

[24]  Xiaotu Ma,et al.  Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome , 2018, Nature Communications.

[25]  Nicholas Light,et al.  Ewing‐like sarcoma: An emerging family of round cell sarcomas , 2018, Journal of cellular physiology.

[26]  N. Schultz,et al.  A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) , 2018, Annals of oncology : official journal of the European Society for Medical Oncology.

[27]  B. Dickson,et al.  Response to Immune Checkpoint Inhibition in Two Patients with Alveolar Soft-Part Sarcoma , 2018, Cancer Immunology Research.

[28]  S. Raimondi,et al.  Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high‐grade and diffuse intrinsic pontine glioma , 2018, Pediatric blood & cancer.

[29]  J. Maris,et al.  Abstract LB-136: Pediatric Preclinical Testing Consortium evaluation of a DLL3-targeted antibody drug conjugate rovalpituzumab tesirine, in neuroblastoma , 2018, Clinical Research (Excluding Clinical Trials).

[30]  Mariella G. Filbin,et al.  Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma , 2018, Acta Neuropathologica Communications.

[31]  David T. W. Jones,et al.  Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas , 2018, Acta Neuropathologica.

[32]  T. Cripe,et al.  Pediatric Cancer Immunotherapy: Opportunities and Challenges , 2018, Pediatric Drugs.

[33]  R. Young,et al.  Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry , 2018, Nature Genetics.

[34]  E. de Álava,et al.  Are EWSR1-NFATc2-positive sarcomas really Ewing sarcomas? , 2018, Modern Pathology.

[35]  David T. W. Jones,et al.  Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. , 2018, The Lancet. Oncology.

[36]  Gang Liu,et al.  A cohort study , 2018 .

[37]  S. Jason,et al.  Neuroblastoma , 2018, Definitions.

[38]  O. Delattre,et al.  Transcriptomic definition of molecular subgroups of small round cell sarcomas , 2018, The Journal of pathology.

[39]  Jessica L. Davis,et al.  Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. , 2018, The Lancet. Oncology.

[40]  C. Klein,et al.  CD20-TCB with Obinutuzumab Pretreatment as Next-Generation Treatment of Hematologic Malignancies , 2018, Clinical Cancer Research.

[41]  W. Foulkes,et al.  Hereditary SWI/SNF complex deficiency syndromes. , 2018, Seminars in diagnostic pathology.

[42]  Jaewhan Song,et al.  Regulatory Network of ARF in Cancer Development , 2018, Molecules and cells.

[43]  Steven J. M. Jones,et al.  Pathogenic Germline Variants in 10,389 Adult Cancers. , 2018, Cell.

[44]  H. Lo,et al.  Inhibiting TRK Proteins in Clinical Cancer Therapy , 2018, Cancers.

[45]  David T. W. Jones,et al.  Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information , 2018, Modern Pathology.

[46]  Michael C. Heinold,et al.  The landscape of genomic alterations across childhood cancers , 2018, Nature.

[47]  David T. W. Jones,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[48]  S. Pfister,et al.  Response in a child with a BRAF V600E mutated desmoplastic infantile astrocytoma upon retreatment with vemurafenib , 2018, Pediatric blood & cancer.

[49]  Funda Meric-Bernstam,et al.  Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children , 2018, The New England journal of medicine.

[50]  Christopher W Mount,et al.  Potent antitumor efficacy of anti-GD2 CAR T-cells in H3K27M+ diffuse midline gliomas , 2018, Nature Medicine.

[51]  Xin Zhou,et al.  Pan-cancer genome and transcriptome analyses of 1,699 pediatric leukemias and solid tumors , 2018, Nature.

[52]  D. Nowis,et al.  Risk and surrogate benefit for pediatric Phase I trials in oncology: A systematic review with meta-analysis , 2018, PLoS medicine.

[53]  M. Roussel,et al.  Establishing a Preclinical Multidisciplinary Board for Brain Tumors , 2018, Clinical Cancer Research.

[54]  Birgit Geoerger,et al.  Precision medicine in pediatric oncology , 2017, Current opinion in pediatrics.

[55]  Navaneethan Radhakrishnan,et al.  Identifying synthetic lethal targets using CRISPR/Cas9 system. , 2017, Methods.

[56]  K. Hess,et al.  Characteristics and outcomes of patients with advanced sarcoma enrolled in early phase immunotherapy trials , 2017, Journal of Immunotherapy for Cancer.

[57]  Anne Song,et al.  Therapeutic Targeting of Ependymoma as Informed by Oncogenic Enhancer Profiling , 2017, Nature.

[58]  Steven B. Neuhauser,et al.  PDX-MI: Minimal Information for Patient-Derived Tumor Xenograft Models. , 2017, Cancer research.

[59]  Kun Mu,et al.  Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma , 2017, Cancer cell.

[60]  A. Manabe,et al.  Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors , 2017, Oncoimmunology.

[61]  D. Busch,et al.  Systematic identification of cancer-specific MHC-binding peptides with RAVEN , 2017, bioRxiv.

[62]  J. Khan,et al.  Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. , 2017, Cancer cell.

[63]  J. Foster,et al.  Dinutuximab for the treatment of pediatric patients with neuroblastoma. , 2017, Drugs of today.

[64]  S. Kaste,et al.  Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor , 2017, Oncotarget.

[65]  Qing-Rong Chen,et al.  A Children's Oncology Group and TARGET Initiative Exploring the Genetic Landscape of Wilms Tumor , 2017, Nature Genetics.

[66]  M. Lim,et al.  Targeting ALK With Crizotinib in Pediatric Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic Tumor: A Children's Oncology Group Study. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[67]  J. Huse,et al.  Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy , 2017, Neuro-oncology.

[68]  M. Prados,et al.  A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study , 2017, Neuro-oncology.

[69]  Anang A. Shelat,et al.  Orthotopic Patient-Derived Xenografts of Pediatric Solid Tumors , 2017, Nature.

[70]  P. Varlet,et al.  Molecular Screening for Cancer Treatment Optimization (MOSCATO-01) in Pediatric Patients: A Single-Institutional Prospective Molecular Stratification Trial , 2017, Clinical Cancer Research.

[71]  D. Johnston,et al.  Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome , 2017, Acta Neuropathologica.

[72]  F. Speleman,et al.  Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma , 2017, Oncotarget.

[73]  Sirintra Nakjang,et al.  Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study , 2017, The Lancet. Oncology.

[74]  Roland Eils,et al.  The whole-genome landscape of medulloblastoma subtypes , 2017, Nature.

[75]  David T. W. Jones,et al.  From class waivers to precision medicine in paediatric oncology. , 2017, The Lancet. Oncology.

[76]  P. Iversen,et al.  Mouse PDX Trial Suggests Synergy of Concurrent Inhibition of RAF and EGFR in Colorectal Cancer with BRAF or KRAS Mutations , 2017, Clinical Cancer Research.

[77]  A. Goldenberg,et al.  Intertumoral Heterogeneity within Medulloblastoma Subgroups. , 2017, Cancer cell.

[78]  M. Loh,et al.  Precision Medicine in Pediatric Oncology: Translating Genomic Discoveries into Optimized Therapies , 2017, Clinical Cancer Research.

[79]  O. Delattre,et al.  Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors , 2017, Pediatric blood & cancer.

[80]  S. Plon,et al.  Pediatric Cancer Predisposition and Surveillance: An Overview, and a Tribute to Alfred G. Knudson Jr , 2017, Clinical Cancer Research.

[81]  K. Davis,et al.  ADVL1412: Initial results of a phase I/II study of nivolumab and ipilimumab in pediatric patients with relapsed/refractory solid tumors—A COG study. , 2017 .

[82]  B. Geoerger,et al.  Phase 1/2 KEYNOTE-051 study of pembrolizumab (pembro) in pediatric patients (pts) with advanced melanoma or a PD-L1+ advanced, relapsed, or refractory solid tumor or lymphoma. , 2017 .

[83]  M. Kowgier,et al.  A phase I/II study of atezolizumab in pediatric and young adult patients with refractory/relapsed solid tumors (iMATRIX-Atezolizumab). , 2017 .

[84]  M. Ladanyi,et al.  DNA Methylation-Based Classifier for Accurate Molecular Diagnosis of Bone Sarcomas. , 2017, JCO precision oncology.

[85]  S. Pfister,et al.  Early phase clinical trials of anticancer agents in children and adolescents — an ITCC perspective , 2017, Nature Reviews Clinical Oncology.

[86]  T. Mcclanahan,et al.  Patterns of PD‐1, PD‐L1, and PD‐L2 expression in pediatric solid tumors , 2017, Pediatric blood & cancer.

[87]  M. Lim,et al.  Target and Agent Prioritization for the Children’s Oncology Group—National Cancer Institute Pediatric MATCH Trial , 2017, Journal of the National Cancer Institute.

[88]  M. Fischer,et al.  A Phase I Study of the CDK4/6 Inhibitor Ribociclib (LEE011) in Pediatric Patients with Malignant Rhabdoid Tumors, Neuroblastoma, and Other Solid Tumors , 2017, Clinical Cancer Research.

[89]  David T. W. Jones,et al.  H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers , 2017, Acta Neuropathologica.

[90]  C. Mackall,et al.  Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. , 2017, Cancer cell.

[91]  D. Steinemann,et al.  Childhood cancer predisposition syndromes—A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology , 2017, American journal of medical genetics. Part A.

[92]  James D. Brenton,et al.  Liquid biopsies come of age: towards implementation of circulating tumour DNA , 2017, Nature Reviews Cancer.

[93]  N. Ratner,et al.  Activity of Selumetinib in Neurofibromatosis Type 1-Related Plexiform Neurofibromas. , 2016, The New England journal of medicine.

[94]  Stuart J. Andrews,et al.  Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations , 2016, Genome Medicine.

[95]  Jonathan M Marron,et al.  Patient/parent perspectives on genomic tumor profiling of pediatric solid tumors: The Individualized Cancer Therapy (iCat) experience , 2016, Pediatric blood & cancer.

[96]  Richard C. McEachin,et al.  Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas , 2016, Science Translational Medicine.

[97]  Roland Eils,et al.  Recurrent MET fusion genes represent a drug target in pediatric glioblastoma , 2016, Nature Medicine.

[98]  Peter J Houghton,et al.  Evaluation of Alternative In Vivo Drug Screening Methodology: A Single Mouse Analysis. , 2016, Cancer research.

[99]  D. Merico,et al.  Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[100]  A. Panigrahy,et al.  Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study , 2016, Journal of Neuro-Oncology.

[101]  M. Frühwald,et al.  Immunotherapy in atypical teratoid-rhabdoid tumors: Data from a survey of the HGG-Immuno Group. , 2016, Cytotherapy.

[102]  David T. W. Jones,et al.  Next-generation personalised medicine for high-risk paediatric cancer patients - The INFORM pilot study. , 2016, European journal of cancer.

[103]  A. Panigrahy,et al.  Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. , 2016, Neuro-oncology.

[104]  M. Yalon,et al.  Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors , 2016, Journal of Neuro-Oncology.

[105]  Mei Lu,et al.  Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. , 2016, Cancer cell.

[106]  Tao Wang,et al.  Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. , 2016, JAMA oncology.

[107]  B. Crompton,et al.  Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors: The Individualized Cancer Therapy (iCat) Study. , 2016, JAMA oncology.

[108]  C. Bult,et al.  Current state of pediatric sarcoma biology and opportunities for future discovery: A report from the sarcoma translational research workshop. , 2016, Cancer genetics.

[109]  H. Meijers-Heijboer,et al.  Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes , 2016, Scientific Reports.

[110]  R. Versteeg,et al.  High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition , 2016, Oncotarget.

[111]  C. Antonescu,et al.  Gene fusions in soft tissue tumors: Recurrent and overlapping pathogenetic themes , 2016, Genes, chromosomes & cancer.

[112]  Sara M. Federico,et al.  The Childhood Solid Tumor Network: A new resource for the developmental biology and oncology research communities. , 2016, Developmental biology.

[113]  Roland Eils,et al.  Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. , 2016, Cancer cell.

[114]  Birgit Kasch,et al.  Next Generation , 2005, Im OP.

[115]  Roland Eils,et al.  New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs , 2016, Cell.

[116]  S. Steinberg,et al.  Adjuvant Immunotherapy to Improve Outcome in High-Risk Pediatric Sarcomas , 2016, Clinical Cancer Research.

[117]  Roland Eils,et al.  Active medulloblastoma enhancers reveal subgroup-specific cellular origins , 2016, Nature.

[118]  Liliana Goumnerova,et al.  MYB-QKI rearrangements in Angiocentric Glioma drive tumorigenicity through a tripartite mechanism , 2016, Nature Genetics.

[119]  Alan Ashworth,et al.  BRCAness revisited , 2016, Nature Reviews Cancer.

[120]  L. Zitvogel,et al.  Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. , 2015, Cancer cell.

[121]  Li Ding,et al.  Germline Mutations in Predisposition Genes in Pediatric Cancer. , 2015, The New England journal of medicine.

[122]  Joshua A. Bittker,et al.  Correlating chemical sensitivity and basal gene expression reveals mechanism of action , 2015, Nature chemical biology.

[123]  D. Wheeler,et al.  Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney , 2015, Nature Communications.

[124]  Thomas P. Howard,et al.  SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2 , 2015, Nature Medicine.

[125]  J. Wolchok,et al.  Phase I Clinical Trial of Ipilimumab in Pediatric Patients with Advanced Solid Tumors , 2015, Clinical Cancer Research.

[126]  Joshua A. Bittker,et al.  Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. , 2015, Cancer discovery.

[127]  M. Yalon,et al.  IMCT-01PEMBROLIZUMAB: FIRST EXPERIENCE WITH RECURRENT PRIMARY CENTRAL NERVOUS SYSTEM (CNS) TUMORS , 2015 .

[128]  A. Pession,et al.  Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney , 2015, OncoTarget.

[129]  Joshua M. Korn,et al.  High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response , 2015, Nature Medicine.

[130]  Simon C Watkins,et al.  Telomerase activation by genomic rearrangements in high-risk neuroblastoma , 2015, Nature.

[131]  Nallasivam Palanisamy,et al.  Integrative Clinical Sequencing in the Management of Refractory or Relapsed Cancer in Youth. , 2015, JAMA.

[132]  P. Houghton,et al.  Inhibition of MDM2 by RG7388 confers hypersensitivity to X‐radiation in xenograft models of childhood sarcoma , 2015, Pediatric blood & cancer.

[133]  Michael C. Rusch,et al.  Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[134]  Gudrun Schleiermacher,et al.  Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations , 2015, Nature Genetics.

[135]  M. Fukuzawa,et al.  Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney , 2015, Nature Genetics.

[136]  T. Garrington,et al.  Non-Rhabdomyosarcoma Soft Tissue Sarcomas in Children: A Surveillance, Epidemiology, and End Results Analysis Validating COG Risk Stratifications. , 2015, International journal of radiation oncology, biology, physics.

[137]  S. Wootton-Gorges,et al.  Malignant renal tumors in children , 2015, Journal of kidney cancer and VHL.

[138]  Sohita Dhillon Dinutuximab: First Global Approval , 2015, Drugs.

[139]  Gary D Bader,et al.  Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. , 2015, Cancer cell.

[140]  Bo Wen,et al.  Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. , 2015, Cancer cell.

[141]  M. Kool,et al.  Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma , 2015, Acta neuropathologica communications.

[142]  Richard A. Moore,et al.  Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. , 2015, Cancer cell.

[143]  Eckart Meese,et al.  Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. , 2015, Cancer cell.

[144]  Florence I. Raynaud,et al.  Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease , 2015, Cancer cell.

[145]  Bandana Sharma,et al.  CDK7 Inhibition Suppresses Super-Enhancer-Linked Oncogenic Transcription in MYCN-Driven Cancer , 2014, Cell.

[146]  Chris Jones,et al.  Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma , 2014, Nature Reviews Cancer.

[147]  Li Ding,et al.  Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. , 2014, Cancer discovery.

[148]  Jill S. Barnholtz-Sloan,et al.  Childhood Brain Tumor Epidemiology: A Brain Tumor Epidemiology Consortium Review , 2014, Cancer Epidemiology, Biomarkers & Prevention.

[149]  A. McKenna,et al.  The genomic landscape of pediatric Ewing sarcoma. , 2014, Cancer discovery.

[150]  Narasimhan P. Agaram,et al.  Recurrent MYOD1 mutations in pediatric and adult sclerosing and spindle cell rhabdomyosarcomas: Evidence for a common pathogenesis , 2014, Genes, chromosomes & cancer.

[151]  C. Stewart,et al.  Deriving therapies for children with primary CNS tumors using pharmacokinetic modeling and simulation of cerebral microdialysis data. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[152]  P. Grundy,et al.  Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour , 2014, Nature Communications.

[153]  David M. Thomas,et al.  Li-Fraumeni syndrome: cancer risk assessment and clinical management , 2014, Nature Reviews Clinical Oncology.

[154]  Stephen Yip,et al.  Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma , 2014, Nature Genetics.

[155]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[156]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[157]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[158]  G. Getz,et al.  Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. , 2014, Cancer discovery.

[159]  David T. W. Jones,et al.  Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge , 2014, Nature Reviews Cancer.

[160]  C. French NUT midline carcinoma , 2014, Nature Reviews Cancer.

[161]  Roland Eils,et al.  Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas , 2013, Genome Biology.

[162]  V. Amani,et al.  Characterization of Distinct Immunophenotypes across Pediatric Brain Tumor Types , 2013, The Journal of Immunology.

[163]  J. Khan,et al.  Targeting Wild-Type and Mutationally Activated FGFR4 in Rhabdomyosarcoma with the Inhibitor Ponatinib (AP24534) , 2013, PloS one.

[164]  Ricardo Araya,et al.  Results: pilot study , 2013 .

[165]  Dongfang Li,et al.  Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance , 2013, Nature Genetics.

[166]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[167]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[168]  Liliana Goumnerova,et al.  Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1 , 2013, Proceedings of the National Academy of Sciences.

[169]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[170]  Peter Houghton,et al.  A Proposal Regarding Reporting of In Vitro Testing Results , 2013, Clinical Cancer Research.

[171]  W. Lam,et al.  Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. , 2013, The Lancet. Oncology.

[172]  K. Stegmaier,et al.  Targeting MYCN in neuroblastoma by BET bromodomain inhibition. , 2013, Cancer discovery.

[173]  J. Tabernero,et al.  Development of PI3K inhibitors: lessons learned from early clinical trials , 2013, Nature Reviews Clinical Oncology.

[174]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[175]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[176]  Sven Diederichs,et al.  The hallmarks of cancer , 2012, RNA biology.

[177]  J. Squire,et al.  The Genetics of Osteosarcoma , 2012, Sarcoma.

[178]  Drew M. Pardoll,et al.  The blockade of immune checkpoints in cancer immunotherapy , 2012, Nature Reviews Cancer.

[179]  Jinghui Zhang,et al.  Association of age at diagnosis and genetic mutations in patients with neuroblastoma. , 2012, JAMA.

[180]  O. Delattre,et al.  A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion , 2012, Nature Genetics.

[181]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[182]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[183]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[184]  A. Fojo,et al.  Inhibitors Targeting Mitosis: Tales of How Great Drugs against a Promising Target Were Brought Down by a Flawed Rationale , 2012, Clinical Cancer Research.

[185]  D. Gisselsson,et al.  Copy number defects of G1‐Cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis , 2012, Genes, chromosomes & cancer.

[186]  Scott L. Pomeroy,et al.  Molecular subgroups of medulloblastoma: the current consensus , 2011, Acta Neuropathologica.

[187]  Matthew W. Wilson,et al.  A Novel Retinoblastoma Therapy from Genomic and Epigenetic Analyses , 2011, Nature.

[188]  P. Houghton,et al.  The Anti-CD19 Antibody–Drug Conjugate SAR3419 Prevents Hematolymphoid Relapse Postinduction Therapy in Preclinical Models of Pediatric Acute Lymphoblastic Leukemia , 2011, Clinical Cancer Research.

[189]  R. Siebert,et al.  Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. , 2011, The American journal of surgical pathology.

[190]  F. Westermann,et al.  High ALK Receptor Tyrosine Kinase Expression Supersedes ALK Mutation as a Determining Factor of an Unfavorable Phenotype in Primary Neuroblastoma , 2011, Clinical Cancer Research.

[191]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[192]  A. Byars,et al.  Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. , 2010, The New England journal of medicine.

[193]  R. Siebert,et al.  Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. , 2010, American journal of human genetics.

[194]  S. Keir,et al.  Stage 2 Combination Testing of Rapamycin with Cytotoxic Agents by the Pediatric Preclinical Testing Program , 2010, Molecular Cancer Therapeutics.

[195]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[196]  H. Tanke,et al.  The NFATc2 Gene Is Involved in a Novel Cloned Translocation in a Ewing Sarcoma Variant That Couples Its Function in Immunology to Oncology , 2009, Clinical Cancer Research.

[197]  O. Witt,et al.  Targeting histone deacetylases in neuroblastoma. , 2009, Current pharmaceutical design.

[198]  John M. Maris,et al.  Identification of ALK as a major familial neuroblastoma predisposition gene , 2008, Nature.

[199]  Gudrun Schleiermacher,et al.  Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma , 2008, Nature.

[200]  S. Spunt,et al.  Pediatric nonrhabdomyosarcoma soft tissue sarcomas. , 2008, The oncologist.

[201]  J. Ross,et al.  Trends in childhood cancer incidence in the U.S. (1992–2004) , 2008, Cancer.

[202]  A. Feinberg,et al.  An X Chromosome Gene, WTX, Is Commonly Inactivated in Wilms Tumor , 2007, Science.

[203]  Michael A. Dyer,et al.  Inactivation of the p53 pathway in retinoblastoma , 2006, Nature.

[204]  N. Rahman,et al.  Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice , 2006, Archives of Disease in Childhood.

[205]  H. Aburatani,et al.  Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. , 2006, Human molecular genetics.

[206]  P. Lichter,et al.  Detection of chromosomal imbalances in retinoblastoma by matrix‐based comparative genomic hybridization , 2005, Genes, chromosomes & cancer.

[207]  W. Rose,et al.  Therapeutic Synergy of Oral Taxane BMS-275183 and Cetuximab versus Human Tumor Xenografts , 2004, Clinical Cancer Research.

[208]  P. Marks,et al.  Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[209]  Barbara Hero,et al.  Neuroblastoma: biology and molecular and chromosomal pathology. , 2003, The Lancet. Oncology.

[210]  Alfons Meindl,et al.  The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25 , 2001, Oncogene.

[211]  P. Houghton,et al.  Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[212]  Olivier Delattre,et al.  Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer , 1998, Nature.

[213]  P. Sorensen,et al.  A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma , 1998, Nature Genetics.

[214]  M. Greaves Aetiology of acute leukaemia , 1997, The Lancet.

[215]  C. Cooper,et al.  Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma , 1994, Nature Genetics.

[216]  W. Gerald,et al.  Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. , 1994, Cancer research.

[217]  P. Sorensen,et al.  A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS–family transcription factor, ERG , 1994, Nature Genetics.

[218]  J. Downing,et al.  Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. , 1993, Cancer research.

[219]  B. Emanuel,et al.  Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma , 1993, Nature Genetics.

[220]  N. Mandahl,et al.  Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma , 1993, Nature.

[221]  G. Thomas,et al.  Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours , 1992, Nature.

[222]  C. Shields,et al.  Retinoblastoma , 1992, Nature Reviews Disease Primers.

[223]  B. Gallie,et al.  Identification of germline and somatic mutations affecting the retinoblastoma gene. , 1988, Science.

[224]  N. Copeland,et al.  Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism , 1985, Nature.

[225]  Pembrolizumab Approved for Hodgkin Lymphoma. , 2017, Cancer discovery.

[226]  Jerad M. Gardner,et al.  Ewing sarcoma. , 2014, Seminars in diagnostic pathology.

[227]  J. Stockman,et al.  Everolimus for Subependymal Giant-Cell Astrocytomas in Tuberous Sclerosis , 2012 .

[228]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[229]  Ashton C. Berger,et al.  "Lineage addiction" in human cancer: lessons from integrated genomics. , 2005, Cold Spring Harbor symposia on quantitative biology.