True chemical shift correlation maps: a TOCSY experiment with pure shifts in both dimensions.

Signal resolution in (1)H NMR is limited primarily by multiplet structure. Recent advances in pure shift NMR, in which the effects of homonuclear couplings are suppressed, have allowed this limitation to be circumvented in 1D NMR, gaining almost an order of magnitude in spectral resolution. Here for the first time an experiment is demonstrated that suppresses multiplet structure in both domains of a homonuclear two-dimensional spectrum. The principle is demonstrated for the TOCSY experiment, generating a chemical shift correlation map in which a single peak is seen for each coupled relationship, but the principle is general and readily extensible to other homonuclear correlation experiments. Such spectra greatly simplify manual spectral analysis and should be well-suited to automated methods for structure elucidation.

[1]  Mathias Nilsson,et al.  Pure shift 1H NMR: a resolution of the resolution problem? , 2010, Angewandte Chemie.

[2]  David A. Snyder,et al.  Multidimensional Correlation Spectroscopy by Covariance NMR , 2009 .

[3]  W. Bermel,et al.  Experimental access to HSQC spectra decoupled in all frequency dimensions. , 2009, Journal of magnetic resonance.

[4]  J. Courtieu,et al.  Application of a 1H δ‐resolved 2D NMR experiment to the visualization of enantiomers in chiral environment, using sample spatial encoding and selective echoes , 2009, Magnetic resonance in chemistry : MRC.

[5]  J. Keeler,et al.  Two-dimensional J-spectra with absorption-mode lineshapes. , 2007, Journal of magnetic resonance.

[6]  R. Edden,et al.  Broadband proton‐decoupled proton spectra , 2007, Magnetic resonance in chemistry : MRC.

[7]  G. Morris Two‐Dimensional J‐Resolved Spectroscopy , 2007 .

[8]  M. Nilsson,et al.  Pure shift proton DOSY: diffusion-ordered 1H spectra without multiplet structure. , 2007, Chemical communications.

[9]  Rafael Brüschweiler,et al.  Theory of covariance nuclear magnetic resonance spectroscopy. , 2004, The Journal of chemical physics.

[10]  R. Brüschweiler,et al.  Covariance nuclear magnetic resonance spectroscopy. , 2004, The Journal of chemical physics.

[11]  G. Morris,et al.  Acid-catalyzed degradation of clarithromycin and erythromycin B: a comparative study using NMR spectroscopy. , 2000, Journal of medicinal chemistry.

[12]  Sengstschmid,et al.  Automated Processing of Two-Dimensional Correlation Spectra , 1998, Journal of magnetic resonance.

[13]  K. Zangger,et al.  Homonuclear Broadband-Decoupled NMR Spectra , 1997 .

[14]  Ray Freeman,et al.  A NEW SCHEME FOR TWO-DIMENSIONAL NMR SHIFT CORRELATION , 1995 .

[15]  I. Campbell,et al.  Short selective pulses for biochemical applications. , 1995, Journal of magnetic resonance. Series B.

[16]  A. Bax Broadband homonuclear decoupling in heteronuclear shift correlation NMR spectroscopy , 1983 .

[17]  Richard R. Ernst,et al.  Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy , 1983 .

[18]  A. Pines,et al.  Bilinear rotation decoupling of homonuclear scalar interactions , 1982 .

[19]  Ad Bax,et al.  Homonuclear broadband-decoupled absorption spectra, with linewidths which are independent of the transverse relaxation rate , 1979 .

[20]  R. Freeman,et al.  Proton Chemical-Shift Spectra , 1997 .

[21]  R. Freeman,et al.  Recognition and Clarification of Cross Peaks in Crowded Two-Dimensional Correlation Spectra , 1996 .

[22]  G. Morris,et al.  Experimental chemical shift correlation maps in nuclear magnetic resonance spectroscopy , 1978 .