Generalized boundary equilibria in n-dimensional Filippov systems: The transition between persistence and nonsmooth-fold scenarios

Abstract We analyze a codimension-two bifurcation in generic n -dimensional Filippov (autonomous, piecewise smooth, discontinuous) systems, when a hyperbolic equilibrium collides with the discontinuity boundary. At generic (codim 1) boundary equilibria (BE), two different scenarios can occur: the ‘persistence’ of the stationary solution, that changes from a standard equilibrium on one side of the discontinuity boundary into a pseudo-equilibrium, and the ‘nonsmooth-fold’ between the standard equilibrium and a coexisting pseudo-equilibrium. Generalized (codim 2) boundary equilibria (GBE) separate persistence and nonsmooth-fold scenarios and are here shown to occur together with a fold bifurcation between pseudo-equilibria (PLP). In a two-parameter plane, the PLP bifurcation curve emanates from the GBE point tangentially to the BE curve. The asymptotic of the PLP curve locally to the GBE point is also derived and tested on a 4-dimensional ecological example.

[1]  Yuri A. Kuznetsov,et al.  SlideCont: An Auto97 driver for bifurcation analysis of Filippov systems , 2005, TOMS.

[2]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[3]  Yuri A. Kuznetsov,et al.  An event-driven method to simulate Filippov systems with accurate computing of sliding motions , 2008, TOMS.

[4]  M. di Bernardo,et al.  Bifurcations of dynamical systems with sliding: derivation of normal-form mappings , 2002 .

[5]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[6]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[7]  C J Budd,et al.  Grazing and border-collision in piecewise-smooth systems: a unified analytical framework. , 2001, Physical review letters.

[8]  Gerard Olivar,et al.  Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems , 2008 .

[9]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[10]  Mario di Bernardo,et al.  Bifurcations in Nonsmooth Dynamical Systems , 2008, SIAM Rev..

[11]  M. di Bernardo,et al.  Two-parameter degenerate sliding bifurcations in Filippov systems , 2005 .

[12]  Harry Dankowicz,et al.  TC-HAT: A Novel Toolbox for the Continuation of Periodic Trajectories in Hybrid Dynamical Systems , 2008, SIAM J. Appl. Dyn. Syst..

[13]  MARIO DI BERNARDO,et al.  Nonhyperbolic Boundary Equilibrium bifurcations in Planar Filippov Systems: a Case Study Approach , 2008, Int. J. Bifurc. Chaos.

[14]  Alessandro Colombo,et al.  Discontinuity Induced Bifurcations of Nonhyperbolic Cycles in Nonsmooth Systems , 2009, SIAM J. Appl. Dyn. Syst..

[15]  Yuri A. Kuznetsov,et al.  One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.

[16]  Mario di Bernardo,et al.  Qualitative theory of non-smooth dynamical systems , 2008 .

[17]  Fabio Dercole,et al.  Numerical sliding bifurcation analysis: an application to a relay control system , 2003 .

[18]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[19]  Alan R. Champneys,et al.  Two-Parameter Discontinuity-Induced bifurcations of Limit Cycles: Classification and Open Problems , 2006, Int. J. Bifurc. Chaos.

[20]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[21]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .

[22]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .