Deriving Photometric Redshifts using Fuzzy Archetypes and Self-Organizing Maps. II. Comparing Sampling Techniques Using Mock Data
暂无分享,去创建一个
[1] Stephen J. Roberts,et al. A Sparse Gaussian Process Framework for Photometric Redshift Estimation , 2015, ArXiv.
[2] D. Eisenstein,et al. Exploring photometric redshifts as an optimization problem: an ensemble MCMC and simulated annealing-driven template-fitting approach , 2015, 1508.02484.
[3] Adam O. Kalinich,et al. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.
[4] Ben Hoyle,et al. Measuring photometric redshifts using galaxy images and Deep Neural Networks , 2015, Astron. Comput..
[5] Jun S. Liu,et al. Locally weighted Markov chain Monte Carlo , 2015, 1506.08852.
[6] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[7] Iftach Sadeh. ANNz2 - Photometric redshift and probability density function estimation using machine-learning , 2014, Proceedings of the International Astronomical Union.
[8] E. Ishida,et al. Using gamma regression for photometric redshifts of survey galaxies , 2015, 1507.01293.
[9] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[10] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.