Hybrid gradient particle swarm optimization for dynamic optimization problems of chemical processes

Dynamic optimization problems (DOP) in chemical processes are very challenging because of their highly nonlinear, multidimensional, multipeak and constrained nature. In this paper, we propose a novel algorithm named hybrid gradient particle swarm optimization (HGPSO) by hybridizing particle swarm optimization (PSO) with gradient-based algorithms (GBA). HGSPO can improve the convergence rate and solution precision of pure PSO, and avoid getting trapped to local optimums with pure GBA search. We further incorporate HGPSO into control vector parameterization (CVP), a method converting DOP into nonlinear programming, to solve five complex DOPs. These DOPs include multimodal, multidimensional and constrained problems. The experiments demonstrate that HGPSO performs much better in terms of solution precision and computational cost when compared with other PSO variants. © 2013 Curtin University of Technology and John Wiley & Sons, Ltd.

[1]  R. Luus Application of dynamic programming to high-dimensional non-linear optimal control problems , 1990 .

[2]  Ying Liu,et al.  An effective hybrid particle swarm optimization for batch scheduling of polypropylene processes , 2010, Comput. Chem. Eng..

[3]  Jose A. Egea,et al.  Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method , 2009 .

[4]  Gheorghe Maria,et al.  Derivation of critical and optimal operating conditions for a semibatch reactor under parametric uncertainty based on failure probability indices , 2012 .

[5]  Jie Zhang,et al.  Computers and Chemical Engineering , 2009 .

[6]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[7]  R. Luus,et al.  Optimization of Fed-Batch Reactors by the Luus−Jaakola Optimization Procedure , 1999 .

[8]  Erwie Zahara,et al.  A hybridized approach to data clustering , 2008, Expert Syst. Appl..

[9]  R. Luus,et al.  Optimal Control of Inequality State Constrained Systems , 1997 .

[10]  Feng-Sheng Wang,et al.  Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process , 1999 .

[11]  Xingsheng Gu,et al.  A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan ☆ , 2008 .

[12]  Simant R. Upreti,et al.  A new robust technique for optimal control of chemical engineering processes , 2004, Comput. Chem. Eng..

[13]  P. M. Suárez,et al.  Initial guess of the solution of dynamic optimization of chemical processes , 2010 .

[14]  Victor M. Zavala,et al.  Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems , 2008 .

[15]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[16]  Bhaskar D. Kulkarni,et al.  Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes , 2008, Eur. J. Oper. Res..

[17]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[18]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[19]  L. G. van Willigenburg,et al.  Efficient Differential Evolution algorithms for multimodal optimal control problems , 2003, Appl. Soft Comput..

[20]  Rakesh Angira,et al.  Optimization of dynamic systems: A trigonometric differential evolution approach , 2007, Comput. Chem. Eng..

[21]  Kapil Gupta,et al.  Dynamic Optimization of Chemical Processes using Ant Colony Framework , 2001, Comput. Chem..

[22]  Srinivas Palanki,et al.  Optimal operation of baker's yeast fermentation in the presence of uncertainty , 2006 .

[23]  W. Ramirez,et al.  Optimal production of secreted protein in fed‐batch reactors , 1988 .

[24]  Bing Zhang,et al.  Iterative ant-colony algorithm and its application to dynamic optimization of chemical process , 2005, Comput. Chem. Eng..

[25]  S. A. Dadebo,et al.  Dynamic optimization of constrained chemical engineering problems using dynamic programming , 1995 .

[26]  Q. T. Pham,et al.  Using fuzzy logic to tune an evolutionary algorithm for dynamic optimization of chemical processes , 2012, Comput. Chem. Eng..

[27]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[28]  Jianming Zhang,et al.  Particle swarm optimization algorithm for constrained problems , 2009 .

[29]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[30]  T. Binder,et al.  Dynamic optimization using a wavelet based adaptive control vector parameterization strategy , 2000 .

[31]  Rein Luus,et al.  Evaluation of gradients for piecewise constant optimal control , 1991 .