Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio

[1]  ラリー バーチフィールド New carbon allotrope , 2016 .

[2]  E. Ganz,et al.  Revealing unusual chemical bonding in planar hyper-coordinate Ni2Ge and quasi-planar Ni2Si two-dimensional crystals. , 2015, Physical chemistry chemical physics : PCCP.

[3]  Qing Tang,et al.  Innovation and discovery of graphene‐like materials via density‐functional theory computations , 2015 .

[4]  E. Ganz,et al.  Four Decades of the Chemistry of Planar Hypercoordinate Compounds. , 2015, Angewandte Chemie.

[5]  E. Ganz,et al.  Post-anti-van't Hoff-Le Bel motif in atomically thin germanium-copper alloy film. , 2015, Physical chemistry chemical physics : PCCP.

[6]  E. Ganz,et al.  Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. , 2015, Journal of the American Chemical Society.

[7]  Y. Kawazoe,et al.  Penta-graphene: A new carbon allotrope , 2015, Proceedings of the National Academy of Sciences.

[8]  J. M. Mercero,et al.  Planar pentacoordinate carbons in CBe5(4-) derivatives. , 2015, Physical chemistry chemical physics : PCCP.

[9]  Zhongfang Chen,et al.  Be2C Monolayer with Quasi‐Planar Hexacoordinate Carbons: A Global Minimum Structure. , 2014 .

[10]  Paul von Ragué Schleyer,et al.  Al₂C monolayer: the planar tetracoordinate carbon global minimum. , 2014, Nanoscale.

[11]  Zhongfang Chen,et al.  Be(2)C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. , 2014, Angewandte Chemie.

[12]  Xiaojun Wu,et al.  AlxC Monolayer Sheets: Two-Dimensional Networks with Planar Tetracoordinate Carbon and Potential Applications as Donor Materials in Solar Cell. , 2014, Journal of Physical Chemistry Letters.

[13]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[14]  Harold S. Park,et al.  Negative poisson’s ratio in single-layer black phosphorus , 2014, Nature Communications.

[15]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[16]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[17]  Lai‐Sheng Wang,et al.  A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster. , 2013, The Journal of chemical physics.

[18]  Qing Tang,et al.  Graphene-related nanomaterials: tuning properties by functionalization. , 2013, Nanoscale.

[19]  Qian Wang,et al.  Stability and physical properties of a tri-ring based porous g-C4N3 sheet. , 2013, Physical chemistry chemical physics : PCCP.

[20]  Alexander I Boldyrev,et al.  Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. , 2013, Physical chemistry chemical physics : PCCP.

[21]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[22]  Yu Liu,et al.  Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. , 2013, Physical review letters.

[23]  Wanlin Guo,et al.  Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. , 2012, Journal of the American Chemical Society.

[24]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[25]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[26]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[27]  Shih‐Yuan Liu,et al.  A single-component liquid-phase hydrogen storage material. , 2011, Journal of the American Chemical Society.

[28]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[29]  Yanchao Wang,et al.  Predicting two-dimensional boron-carbon compounds by the global optimization method. , 2011, Journal of the American Chemical Society.

[30]  Zhongfang Chen,et al.  SiC2 silagraphene and its one-dimensional derivatives: where planar tetracoordinate silicon happens. , 2011, Journal of the American Chemical Society.

[31]  T. Heine,et al.  CAl4Be and CAl3Be2(-): global minima with a planar pentacoordinate carbon atom. , 2010, Chemical communications.

[32]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[33]  X. Zeng,et al.  Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon. , 2010, Journal of the American Chemical Society.

[34]  Yan-Bo Wu,et al.  Computationally designed families of flat, tubular, and cage molecules assembled with "starbenzene" building blocks through hydrogen-bridge bonds. , 2010, Chemistry.

[35]  Yan-Bo Wu,et al.  Simplest neutral singlet C2E4 (E = Al, Ga, In, and Tl) global minima with double planar tetracoordinate carbons: equivalence of C2 moieties in C2E4 to carbon centers in CAl4(2-) and CAl5(+). , 2009, The journal of physical chemistry. A.

[36]  Xiaojun Wu,et al.  B2C graphene, nanotubes, and nanoribbons. , 2009, Nano letters.

[37]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[38]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[39]  P. Schleyer,et al.  Planar pentacoordinate carbon in CAl5(+): a global minimum. , 2008, Journal of the American Chemical Society.

[40]  Z. Cao,et al.  Zigzag boron-carbon nanotubes with quasi-planar tetracoordinate carbons. , 2008, Journal of the American Chemical Society.

[41]  X. Zeng,et al.  Probing the planar tetra-, penta-, and hexacoordinate carbon in carbon-boron mixed clusters. , 2008, Journal of the American Chemical Society.

[42]  Zhongfang Chen,et al.  Planar tetracoordinate carbon species involving beryllium substituents. , 2008, Inorganic chemistry.

[43]  R. Keese Carbon Flatland: Planar Tetracoordinate Carbon and Fenestranes , 2007 .

[44]  Yi‐hong Ding,et al.  Design of sandwichlike complexes based on the planar tetracoordinate carbon unit CAl4(2-). , 2007, Journal of the American Chemical Society.

[45]  P. Schleyer,et al.  Myriad planar hexacoordinate carbon molecules inviting synthesis. , 2007, Journal of the American Chemical Society.

[46]  Thomas Heine,et al.  Recent advances in planar tetracoordinate carbon chemistry , 2007, J. Comput. Chem..

[47]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[48]  C. Corminboeuf,et al.  Theoretical analysis of the smallest carbon cluster containing a planar tetracoordinate carbon. , 2004, Journal of the American Chemical Society.

[49]  R. Hoffmann,et al.  Planar tetracoordinate carbon in extended systems. , 2004, Journal of the American Chemical Society.

[50]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[51]  M. Méndez-Rojas,et al.  (C5M2-n)(n-) (M = Li, Na, K, and n = 0, 1, 2). A new family of molecules containing planar tetracoordinate carbons. , 2003, Journal of the American Chemical Society.

[52]  Zhi‐Xiang Wang,et al.  Planar hypercoordinate carbons joined: wheel-shaped molecules with C-C axles. , 2002, Angewandte Chemie.

[53]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[54]  Zhi‐Xiang Wang,et al.  Construction Principles of "Hyparenes": Families of Molecules with Planar Pentacoordinate Carbons , 2001, Science.

[55]  K. Exner,et al.  Planar hexacoordinate carbon: a viable possibility. , 2000, Science.

[56]  J. Simons,et al.  Experimental Observation of Pentaatomic Tetracoordinate Planar Carbon-Containing Molecules , 2000 .

[57]  Hernandez,et al.  New metallic allotropes of planar and tubular carbon , 2000, Physical review letters.

[58]  Li,et al.  Pentaatomic Tetracoordinate Planar Carbon, , 2000, Angewandte Chemie.

[59]  J. Simons,et al.  Tetracoordinated Planar Carbon in the Al4C- Anion. A Combined Photoelectron Spectroscopy and ab Initio Study , 1999 .

[60]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[61]  J. Simons,et al.  TETRACOORDINATED PLANAR CARBON IN PENTAATOMIC MOLECULES , 1998 .

[62]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[63]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[64]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[65]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[66]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[67]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[68]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[69]  J. B. Collins,et al.  Molecular orbital study of tetrahedral, planar, and pyramidal structures of the isoelectronic series BH4-, CH4, NH4+, AlH4-, SiH4, and PH4+ , 1980 .

[70]  F. Cotton,et al.  The probable existence of a triple bond between two vanadium atoms , 1977 .

[71]  J. B. Collins,et al.  Stabilization of planar tetracoordinate carbon , 1976 .

[72]  Roald Hoffmann,et al.  Planar tetracoordinate carbon , 1970 .

[73]  H. Monkhorst Activation energy for interconversion of enantiomers containing an asymmetric carbon atom without breaking bonds , 1968 .