Review on population-based metaheuristic search techniques for optimal power flow

Optimal power flow (OPF) is a non-linear solution which is significantly important in order to analyze the power system operation. The use of optimization algorithm is essential in order to solve OPF problems. The emergence of machine learning presents further techniques which capable to solve the non-linear problem. The performance and the key aspects which enhances the effectiveness of these optimization techniques are compared within several metaheuristic search techniques. This includes the operation of particle swarm optimization (PSO) algorithm, firefly algorithm (FA), artificial bee colony (ABC) algorithm, ant colony optimization (ACO) algorithm and differential evolution (DE) algorithm. This paper reviews on the key elements that need to be considered when selecting metaheuristic techniques to solve OPF problem in power system operation.

[1]  M. A. Abido,et al.  Optimal power flow using differential evolution algorithm , 2009 .

[2]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[3]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[4]  Amit Shrivastava,et al.  A Simulation Analysis of Optimal Power Flow using Differential Evolution Algorithm for IEEE-30 Bus System , 2014 .

[5]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[6]  Antonio Bolufé Röhler,et al.  Matheuristics: Optimization, Simulation and Control , 2009, Hybrid Metaheuristics.

[7]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[8]  Wei Liu,et al.  Dynamic population artificial bee colony algorithm for multi-objective optimal power flow , 2017, Saudi journal of biological sciences.

[9]  M. Surya Kalavathi,et al.  Optimal Power Flow using Ant Colony Search Algorithm to Evaluate Load Curtailment Incorporating Voltage Stability Margin Criterion , 2013 .

[10]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..

[11]  Ponnuthurai N. Suganthan,et al.  Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques , 2018, Eng. Appl. Artif. Intell..

[12]  Thomas Stützle,et al.  Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms , 2010, Matheuristics.

[13]  Firas M. Tuaimah,et al.  Ant Colony Optimization based Optimal Power Flow Analysis for the Iraqi Super High Voltage Grid , 2013 .

[14]  Luong Le Dinh,et al.  Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem , 2013, TheScientificWorldJournal.

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[17]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[18]  Laxmi Srivastava,et al.  Optimal Power Flow Using Differential Evolution Algorithm With Conventional Weighted Sum Method , 2012 .

[19]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[20]  T. Govindaraj Firefly Algorithm for Optimal Power Flow Considering Control Variables , 2014 .

[21]  Xin-She Yang,et al.  Metaheuristic Optimization , 2011, Scholarpedia.

[22]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[23]  Arpan Kumar Kar,et al.  Swarm Intelligence: A Review of Algorithms , 2017 .

[24]  H. Morais,et al.  Ant Colony Search algorithm for the optimal power flow problem , 2011, 2011 IEEE Power and Energy Society General Meeting.