Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology

The paper introduces and studies numerical methods that are fully adaptive in both three-dimensional (3D) space and time to challenging multiscale cardiac reaction-diffusion models. In these methods, temporal adaptivity comes via stepsize control in function space oriented linearly implicit time integration, while spatial adaptivity is realized within multilevel finite element methods controlled by a posteriori local error estimators. In contrast to other recent adaptivity approaches to cardiac modeling that discretize first in space and then in time (so-called method of lines), our method discretizes first in time and then in space (so-called Rothe method)---an approach that has already proven to be highly efficient in a number of challenging multiscale problems in science and technology (KARDOS code library). With this method, the evolution of a complete heartbeat, from the excitation to the recovery phase, is simulated both in the frame of the anisotropic monodomain models and in the more realistic anisotropic bidomain models, coupled with either a variant of the simple FitzHugh--Nagumo model or the more complex phase-I Luo--Rudy ionic model. The numerical results exhibit a rather satisfactory performance of our adaptive method for complex cardiac reaction-diffusion models on 3D domains up to moderate sizes. In particular, the method accurately resolves the evolution of the intra- and extracellular potentials, gating variables, and ion concentrations during the excitation, plateau, and recovery phases.

[1]  P. C. Franzone,et al.  A PARALLEL SOLVER FOR REACTION-DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY , 2004 .

[2]  D. Rose,et al.  Linear algebraic transformations of the bidomain equations: implications for numerical methods. , 1994, Mathematical biosciences.

[3]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[4]  C. Henriquez Simulating the electrical behavior of cardiac tissue using the bidomain model. , 1993, Critical reviews in biomedical engineering.

[5]  Jens Lang,et al.  Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.

[6]  Giuseppe Savaré,et al.  Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level , 2002 .

[7]  Arun V. Holden,et al.  Computational biology of the heart , 1998, The Mathematical Gazette.

[8]  Kazuo Nakazawa,et al.  Spiral Wave Control by a Localized Stimulus: , 2004, Journal of cardiovascular electrophysiology.

[9]  Peter Deuflhard,et al.  Adaptive Algorithms in Dynamical Process Simulation , 1996 .

[10]  I. Efimov,et al.  Dynamics of virtual electrode-induced scroll-wave reentry in a 3D bidomain model. , 2004, American journal of physiology. Heart and circulatory physiology.

[11]  Peter Deuflhard,et al.  Recent progress in extrapolation methods for ordinary differential equations , 1985 .

[12]  P. Deuflhard,et al.  Anatomy- and physics-based facial animation for craniofacial surgery simulations , 2004, Medical and Biological Engineering and Computing.

[13]  Jens Lang,et al.  KARDOS - User"s Guide , 2002 .

[14]  H. H. Rosenbrock,et al.  Some general implicit processes for the numerical solution of differential equations , 1963, Comput. J..

[15]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[16]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[17]  K. Strehmel,et al.  Linear-implizite Runge-Kutta-Methoden und ihre Anwendung , 1992 .

[18]  V. Simoncini,et al.  Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process , 2002 .

[19]  Dd. Streeter,et al.  Gross morphology and fiber geometry of the heart , 1979 .

[20]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[21]  B. Roth,et al.  Action potential propagation in a thick strand of cardiac muscle. , 1991, Circulation research.

[22]  A. Tveito,et al.  Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso , 2002 .

[23]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[24]  A. Tveito,et al.  Electrical Activity in the Human Heart , 2003 .

[25]  B. Taccardi,et al.  Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. , 1998, Mathematical biosciences.

[26]  Folkmar A. Bornemann,et al.  An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..

[27]  J. Trangenstein,et al.  Operator splitting and adaptive mesh refinement for the Luo-Rudy I model , 2004 .

[28]  Peter Deuflhard,et al.  Numerische Mathematik II , 1994 .

[29]  C. Henriquez,et al.  Anisotropy, Fiber Curvature, and Bath Loading Effects on Activation in Thin and Thick Cardiac Tissue Preparations: , 1996, Journal of cardiovascular electrophysiology.

[30]  A. McCulloch,et al.  A collocation-Galerkin finite element model of cardiac action potential propagation , 1994, IEEE Transactions on Biomedical Engineering.

[31]  B. Roth How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle , 1992 .

[32]  Peter Deuflhard,et al.  A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning , 2000 .

[33]  Yoram Rudy,et al.  Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model , 2004, Circulation.

[34]  Kjell Gustafsson,et al.  Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.

[35]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[36]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[37]  P. C. Franzone,et al.  Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model. , 1993, Mathematical biosciences.

[38]  John A. Board,et al.  A modular simulation system for the bidomain equations , 1999 .

[39]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[40]  K. Gustafsson,et al.  API stepsize control for the numerical solution of ordinary differential equations , 1988 .

[41]  Y. Rudy,et al.  Basic mechanisms of cardiac impulse propagation and associated arrhythmias. , 2004, Physiological reviews.

[42]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[43]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[44]  P. C. Franzone,et al.  Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations , 1990, Journal of mathematical biology.

[45]  B. Roth Meandering of spiral waves in anisotropic cardiac tissue , 2001 .

[46]  José Jalife,et al.  Cardiac Electrophysiology: Fourth Edition , 2004 .

[47]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[48]  Willem Hundsdorfer,et al.  A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..

[49]  P. Wolf,et al.  Region Specific Modeling of Cardiac Muscle: Comparison of Simulated and Experimental Potentials , 2002, Annals of Biomedical Engineering.

[50]  Jens Lang,et al.  The Impact of a Nonlinear Heat Transfer Model for Temperature Control in Regional Hyperthermia , 1999 .

[51]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[52]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[53]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[54]  Jens Lang,et al.  Adaptive FEM for reaction-diffusion equations , 1998 .

[55]  Lutz Tobiska,et al.  Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations , 1996 .

[56]  Hongyi Yu A Local Space-Time Adaptive Scheme in Solving Two-Dimensional Parabolic Problems Based on Domain Decomposition Methods , 2001, SIAM J. Sci. Comput..

[57]  Gernot Plank,et al.  Preconditioning Techniques for the Bidomain Equations , 2005 .

[58]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[59]  Jens Lang,et al.  ROS3P—An Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems , 2000 .

[60]  Xiao-Chuan Cai,et al.  A fully implicit parallel algorithm for simulating the non‐linear electrical activity of the heart , 2004, Numer. Linear Algebra Appl..

[61]  Christian Lubich,et al.  Rosenbrock methods for differential-algebraic systems with solution-dependent singular matrix multiplying the derivative , 1990, Computing.

[62]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[63]  B. Roth,et al.  How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle , 1992, Journal of mathematical biology.

[64]  Piero Colli Franzone,et al.  Parallel solution of Cardiac Reaction-Diffusion Models , 2005 .

[65]  Jens Lang,et al.  A finite element method adaptive in space and time for nonlinear reaction-diffusion systems , 1992, IMPACT Comput. Sci. Eng..

[66]  B. Taccardi,et al.  Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. , 2005, Mathematical biosciences.

[67]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[68]  Peter K. Moore,et al.  An Adaptive Finite Element Method for Parabolic Differential Systems: Some Algorithmic Considerations in Solving in Three Space Dimensions , 1999, SIAM J. Sci. Comput..

[69]  P. Hunter,et al.  Laminar structure of the heart: a mathematical model. , 1997, The American journal of physiology.

[70]  C S Henriquez,et al.  A space-time adaptive method for simulating complex cardiac dynamics. , 2000, Physical review letters.

[71]  James P. Keener,et al.  Mathematical physiology , 1998 .

[72]  Natalia A. Trayanova,et al.  Computational techniques for solving the bidomain equations in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[73]  Peter Deuflhard,et al.  Uniqueness Theorems for Stiff ODE Initial Value Problems. , 1987 .