Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT

This study introduces an order-constrained Bayes inference framework useful for analyzing data containing dichotomous-scored item responses, under the assumptions of either the monotone homogeneity model or the double monotonicity model of nonparametric item response theory (NIRT). The framework involves the implementation of Gibbs sampling to estimate order-constrained parameters, followed by inference with the posterior-predictive distribution to test the monotonicity, invariant item ordering, and local independence assumptions of NIRT. The Bayes framework is demonstrated through the analysis of real test data, and possible extensions of it are discussed.

[1]  Brian W. Junker,et al.  Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .

[2]  B. Junker Conditional association, essential independence and monotone unidimensional Item response models , 1993 .

[3]  Charles Lewis,et al.  A Nonparametric Approach to the Analysis of Dichotomous Item Responses , 1982 .

[4]  B. Junker,et al.  Nonparametric Item Response Theory in Action: An Overview of the Special Issue , 2001 .

[5]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[6]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[7]  Brian Neelon,et al.  Bayesian Inference on Order‐Constrained Parameters in Generalized Linear Models , 2003, Biometrics.

[8]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[9]  George Karabatsos,et al.  Enumerating and testing conjoint measurement models , 2002, Mathematical Social Sciences.

[10]  William F. Strout A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation , 1990 .

[11]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[12]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[13]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[14]  H. Scheiblechner Additive conjoint isotonic probabilistic models (ADISOP) , 1999 .

[15]  Robert J. Mokken,et al.  A Theory and Procedure of Scale Analysis. , 1973 .

[16]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[17]  Jeroen K. Vermunt,et al.  The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .

[18]  D. Grayson,et al.  Two-group classification in latent trait theory: Scores with monotone likelihood ratio , 1988 .

[19]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[20]  M. J. Bayarri,et al.  P Values for Composite Null Models , 2000 .

[21]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[22]  Xiao-Li Meng,et al.  Posterior Predictive $p$-Values , 1994 .

[23]  Wendy M. Yen,et al.  Scaling Performance Assessments: Strategies for Managing Local Item Dependence , 1993 .

[24]  M.J.H. van Onna,et al.  Bayesian estimation and model selection in ordered latent class models for polytomous items , 2002 .

[25]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[26]  Richard J. Patz,et al.  A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .

[27]  Huynh Huynh,et al.  A new proof for monotone likelihood ratio for the sum of independent bernoulli random variables , 1994 .

[28]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[29]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[30]  James M. Robins,et al.  Asymptotic Distribution of P Values in Composite Null Models , 2000 .

[31]  Brian W. Junker,et al.  Essential independence and likelihood-based ability estimation for polytomous items , 1991 .

[32]  W. Batchelder,et al.  Markov chain estimation for test theory without an answer key , 2003 .

[33]  P. Rosenbaum,et al.  Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .

[34]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[35]  W Meredith,et al.  Some results based on a general stochastic model for mental tests , 1965, Psychometrika.

[36]  W. Batchelder,et al.  Test theory without an answer key , 1988 .

[37]  Klaas Sijtsma,et al.  Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .

[38]  Michael Evans,et al.  Bayesian ikference procedures derived via the concept of relative surprise , 1997 .

[39]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[40]  B. Junker,et al.  A characterization of monotone unidimensional latent variable models , 1997 .

[41]  Larry Wasserman,et al.  Prior distributions for the bivariate binomial , 1990 .

[42]  Marcel A. Croon,et al.  Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .

[43]  James O. Berger,et al.  A Catalog of Noninformative Priors , 1996 .

[44]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[45]  Hartmann Scheiblechner,et al.  Isotonic ordinal probabilistic models (ISOP) , 1995 .

[46]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[47]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[48]  Brian W. Junker,et al.  Latent and Manifest Monotonicity in Item Response Models , 2000 .

[49]  K Sijtsma,et al.  A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.

[50]  Klaas Sijtsma Contributions to Mokken's nonparametric item response theory , 1988 .

[51]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[52]  G. Karabatsos,et al.  The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. , 2001, Journal of applied measurement.