Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT
暂无分享,去创建一个
[1] Brian W. Junker,et al. Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .
[2] B. Junker. Conditional association, essential independence and monotone unidimensional Item response models , 1993 .
[3] Charles Lewis,et al. A Nonparametric Approach to the Analysis of Dichotomous Item Responses , 1982 .
[4] B. Junker,et al. Nonparametric Item Response Theory in Action: An Overview of the Special Issue , 2001 .
[5] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[6] F. T. Wright,et al. Order restricted statistical inference , 1988 .
[7] Brian Neelon,et al. Bayesian Inference on Order‐Constrained Parameters in Generalized Linear Models , 2003, Biometrics.
[8] J. Kalbfleisch. Statistical Inference Under Order Restrictions , 1975 .
[9] George Karabatsos,et al. Enumerating and testing conjoint measurement models , 2002, Mathematical Social Sciences.
[10] William F. Strout. A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation , 1990 .
[11] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[12] Xiao-Li Meng,et al. POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .
[13] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[14] H. Scheiblechner. Additive conjoint isotonic probabilistic models (ADISOP) , 1999 .
[15] Robert J. Mokken,et al. A Theory and Procedure of Scale Analysis. , 1973 .
[16] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[17] Jeroen K. Vermunt,et al. The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .
[18] D. Grayson,et al. Two-group classification in latent trait theory: Scores with monotone likelihood ratio , 1988 .
[19] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[20] M. J. Bayarri,et al. P Values for Composite Null Models , 2000 .
[21] Jaap Van Brakel,et al. Foundations of measurement , 1983 .
[22] Xiao-Li Meng,et al. Posterior Predictive $p$-Values , 1994 .
[23] Wendy M. Yen,et al. Scaling Performance Assessments: Strategies for Managing Local Item Dependence , 1993 .
[24] M.J.H. van Onna,et al. Bayesian estimation and model selection in ordered latent class models for polytomous items , 2002 .
[25] A. Rukhin. Bayes and Empirical Bayes Methods for Data Analysis , 1997 .
[26] Richard J. Patz,et al. A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .
[27] Huynh Huynh,et al. A new proof for monotone likelihood ratio for the sum of independent bernoulli random variables , 1994 .
[28] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[29] F. Samejima. Estimation of latent ability using a response pattern of graded scores , 1968 .
[30] James M. Robins,et al. Asymptotic Distribution of P Values in Composite Null Models , 2000 .
[31] Brian W. Junker,et al. Essential independence and likelihood-based ability estimation for polytomous items , 1991 .
[32] W. Batchelder,et al. Markov chain estimation for test theory without an answer key , 2003 .
[33] P. Rosenbaum,et al. Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .
[34] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[35] W Meredith,et al. Some results based on a general stochastic model for mental tests , 1965, Psychometrika.
[36] W. Batchelder,et al. Test theory without an answer key , 1988 .
[37] Klaas Sijtsma,et al. Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .
[38] Michael Evans,et al. Bayesian ikference procedures derived via the concept of relative surprise , 1997 .
[39] Bradley P. Carlin,et al. BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..
[40] B. Junker,et al. A characterization of monotone unidimensional latent variable models , 1997 .
[41] Larry Wasserman,et al. Prior distributions for the bivariate binomial , 1990 .
[42] Marcel A. Croon,et al. Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .
[43] James O. Berger,et al. A Catalog of Noninformative Priors , 1996 .
[44] D. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .
[45] Hartmann Scheiblechner,et al. Isotonic ordinal probabilistic models (ISOP) , 1995 .
[46] Adrian F. M. Smith,et al. Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .
[47] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[48] Brian W. Junker,et al. Latent and Manifest Monotonicity in Item Response Models , 2000 .
[49] K Sijtsma,et al. A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.
[50] Klaas Sijtsma. Contributions to Mokken's nonparametric item response theory , 1988 .
[51] I. W. Molenaar,et al. A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .
[52] G. Karabatsos,et al. The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. , 2001, Journal of applied measurement.