Sparse Phase Retrieval via Truncated Amplitude Flow

This paper develops a novel algorithm, termed <italic>SPARse Truncated Amplitude flow</italic> (SPARTA), to reconstruct a sparse signal from a small number of magnitude-only measurements. It deals with what is also known as sparse phase retrieval (PR), which is <italic>NP-hard</italic> in general and emerges in many science and engineering applications. Upon formulating sparse PR as an amplitude-based nonconvex optimization task, SPARTA works iteratively in two stages: In stage one, the support of the underlying sparse signal is recovered using an analytically well-justified rule, and subsequently a sparse orthogonality-promoting initialization is obtained via power iterations restricted on the support; and in the second stage, the initialization is successively refined by means of hard thresholding based gradient-type iterations. SPARTA is a simple yet effective, scalable, and fast sparse PR solver. On the theoretical side, for any <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>-sparse (<inline-formula> <tex-math notation="LaTeX">$k\ll n$</tex-math></inline-formula>) signal <inline-formula><tex-math notation="LaTeX"> $\boldsymbol {x}$</tex-math></inline-formula> with minimum (in modulus) nonzero entries on the order of <inline-formula> <tex-math notation="LaTeX">$(1/\sqrt{k})\Vert \boldsymbol {x}\Vert _2$</tex-math></inline-formula>, SPARTA recovers the signal exactly (up to a global unimodular constant) from about <inline-formula><tex-math notation="LaTeX">$k^2\log n$ </tex-math></inline-formula> random Gaussian measurements with high probability. Furthermore, SPARTA incurs computational complexity on the order of <inline-formula><tex-math notation="LaTeX">$k^2n\log n$</tex-math> </inline-formula> with total runtime proportional to the time required to read the data, which improves upon the state of the art by at least a factor of <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>. Finally, SPARTA is robust against additive noise of bounded support. Extensive numerical tests corroborate markedly improved recovery performance and speedups of SPARTA relative to existing alternatives.

[1]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[2]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[3]  Lei Tian,et al.  Compressive Phase Retrieval , 2011 .

[4]  John C. Duchi,et al.  Stochastic Methods for Composite Optimization Problems , 2017 .

[5]  Tieyong Zeng,et al.  Variational Phase Retrieval with Globally Convergent Preconditioned Proximal Algorithm , 2018, SIAM J. Imaging Sci..

[6]  Vasileios Nakos,et al.  Sublinear- Time Algorithms for Compressive Phase Retrieval , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[7]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[8]  Yonina C. Eldar,et al.  Recent Advances in Phase Retrieval [Lecture Notes] , 2016, IEEE Signal Processing Magazine.

[9]  Feng Ruan,et al.  Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval , 2017, Information and Inference: A Journal of the IMA.

[10]  Chinmay Hegde,et al.  Sample-Efficient Algorithms for Recovering Structured Signals From Magnitude-Only Measurements , 2017, IEEE Transactions on Information Theory.

[11]  Yue M. Lu,et al.  Fundamental limits of phasemax for phase retrieval: A replica analysis , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[12]  Vladislav Voroninski,et al.  An Elementary Proof of Convex Phase Retrieval in the Natural Parameter Space via the Linear Program PhaseMax , 2016, ArXiv.

[13]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[14]  Gang Wang,et al.  Solving Almost all Systems of Random Quadratic Equations , 2017, NIPS 2017.

[15]  A. Fannjiang,et al.  Phase Retrieval With One or Two Diffraction Patterns by Alternating Projections of the Null Vector , 2015 .

[16]  Chinmay Hegde,et al.  Phase Retrieval Using Structured Sparsity: A Sample Efficient Algorithmic Framework , 2017, ArXiv.

[17]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[18]  Yingbin Liang,et al.  Reshaped Wirtinger Flow for Solving Quadratic System of Equations , 2016, NIPS.

[19]  Gang Wang,et al.  Solving Random Systems of Quadratic Equations via Truncated Generalized Gradient Flow , 2016, NIPS.

[20]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[21]  Mahdi Soltanolkotabi,et al.  Structured Signal Recovery From Quadratic Measurements: Breaking Sample Complexity Barriers via Nonconvex Optimization , 2017, IEEE Transactions on Information Theory.

[22]  Yonina C. Eldar,et al.  Phase Retrieval: An Overview of Recent Developments , 2015, ArXiv.

[23]  Gang Wang,et al.  Adaptive censoring for large-scale regressions , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[25]  Alexandr Andoni,et al.  Correspondence retrieval , 2017, COLT.

[26]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[27]  Anastasios Kyrillidis,et al.  Finding Low-rank Solutions to Matrix Problems, Efficiently and Provably , 2016, SIAM J. Imaging Sci..

[28]  Volkan Cevher,et al.  Recipes on hard thresholding methods , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[29]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[30]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[31]  Irène Waldspurger,et al.  Phase Retrieval With Random Gaussian Sensing Vectors by Alternating Projections , 2016, IEEE Transactions on Information Theory.

[32]  Daniel Pérez Palomar,et al.  Undersampled Sparse Phase Retrieval via Majorization–Minimization , 2016, IEEE Transactions on Signal Processing.

[33]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[34]  Yuejie Chi,et al.  Reshaped Wirtinger Flow and Incremental Algorithm for Solving Quadratic System of Equations , 2016 .

[35]  Nikos D. Sidiropoulos,et al.  Phase Retrieval Using Feasible Point Pursuit: Algorithms and Cramér–Rao Bound , 2015, IEEE Transactions on Signal Processing.

[36]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[37]  A. Fannjiang,et al.  Phase Retrieval with One or Two Diffraction Patterns by Alternating Projections with the Null Initialization , 2015, 1510.07379.

[38]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[39]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[40]  Andrea Montanari,et al.  Fundamental Limits of Weak Recovery with Applications to Phase Retrieval , 2017, COLT.

[41]  Gang Wang,et al.  Solving large-scale systems of random quadratic equations via stochastic truncated amplitude flow , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[42]  Dan Edidin,et al.  An algebraic characterization of injectivity in phase retrieval , 2013, ArXiv.

[43]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[44]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[45]  Laura Waller,et al.  Experimental robustness of Fourier Ptychography phase retrieval algorithms , 2015, Optics express.

[46]  Allen Y. Yang,et al.  CPRL -- An Extension of Compressive Sensing to the Phase Retrieval Problem , 2012, NIPS.

[47]  Songtao Lu,et al.  A nonconvex splitting method for symmetric nonnegative matrix factorization: Convergence analysis and optimality , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[48]  EDWARD M. HOFSTETTER,et al.  Construction of time-limited functions with specified autocorrelation functions , 1964, IEEE Trans. Inf. Theory.

[49]  Yang Wang,et al.  Robust sparse phase retrieval made easy , 2014, 1410.5295.

[50]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[51]  Yonina C. Eldar,et al.  Non-Convex Phase Retrieval From STFT Measurements , 2016, IEEE Transactions on Information Theory.

[52]  Wasim Huleihel,et al.  Channels With Cooperation Links That May Be Absent , 2017, IEEE Trans. Inf. Theory.

[53]  Vladislav Voroninski,et al.  Compressed Sensing from Phaseless Gaussian Measurements via Linear Programming in the Natural Parameter Space , 2016, ArXiv.

[54]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[55]  Yingbin Liang,et al.  Median-Truncated Nonconvex Approach for Phase Retrieval With Outliers , 2016, IEEE Transactions on Information Theory.

[56]  Feng Ruan,et al.  Stochastic Methods for Composite and Weakly Convex Optimization Problems , 2017, SIAM J. Optim..

[57]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[58]  M. Wainwright,et al.  High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.

[59]  V. Bentkus An Inequality for Tail Probabilities of Martingales with Differences Bounded from One Side , 2003 .

[60]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[61]  Yingbin Liang,et al.  Provable Non-convex Phase Retrieval with Outliers: Median TruncatedWirtinger Flow , 2016, ICML.

[62]  Jianqing Fan,et al.  Distributions of angles in random packing on spheres , 2013, J. Mach. Learn. Res..

[63]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[64]  Gang Wang,et al.  Solving large-scale systems of random quadratic equations via stochastic truncated amplitude flow , 2016, 2017 25th European Signal Processing Conference (EUSIPCO).

[65]  Gang Wang,et al.  Power scheduling for Kalman filtering over lossy wireless sensor networks , 2017 .

[66]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[67]  Vahid Tarokh,et al.  Sparse Signal Recovery from a Mixture of Linear and Magnitude-Only Measurements , 2015, IEEE Signal Processing Letters.

[68]  Gang Wang,et al.  Online reconstruction from big data via compressive censoring , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[69]  Yue Sun,et al.  Low-Rank Positive Semidefinite Matrix Recovery From Corrupted Rank-One Measurements , 2016, IEEE Transactions on Signal Processing.

[70]  Gang Wang,et al.  SPARTA: Sparse phase retrieval via Truncated Amplitude flow , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[71]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[72]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[73]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[74]  Yuejie Chi,et al.  Kaczmarz Method for Solving Quadratic Equations , 2016, IEEE Signal Processing Letters.