Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices

A new light‐trapping scheme is described based on tunnelling evanescent waves. The scheme is particularly suitable for low index materials such as organic solar cells and polar inorganic semiconductors such as CdTe, or dielectric layers containing, for example, upconverters. The 4n2 macroscopic limit on light trapping, where n is refractive index, can be exceeded by a large margin using the new scheme. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Zongfu Yu,et al.  Limit of nanophotonic light-trapping in solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[2]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[3]  M. Agrawal Photonic design for efficient solid state energy conversion , 2009 .

[4]  Jamie D. Phillips,et al.  Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms , 2008 .

[5]  Michal Lipson,et al.  Ultrasmall mode volumes in dielectric optical microcavities. , 2005, Physical review letters.

[6]  R. Carminati,et al.  Definition and measurement of the local density of electromagnetic states close to an interface , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[7]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[8]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[9]  Alexander Moroz,et al.  Local optical density of states in SiO 2 spherical microcavities: Theory and experiment , 2001 .

[10]  W. Harrison Elementary Electronic Structure , 1999 .

[11]  D. Hall,et al.  Thermodynamic limit to light trapping in thin planar structures , 1997 .

[12]  J. Muszalski,et al.  Resonant cavity enhanced photonic devices , 1995 .

[13]  A. Scherer,et al.  30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes , 1993 .

[14]  C. Webb,et al.  Double quantum well resonant tunnel diodes , 1990 .

[15]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.

[16]  Ping Sheng,et al.  Wavelength-selective absorption enhancement in thin-film solar cells , 1983 .

[17]  E. Yablonovitch,et al.  Maximum statistical increase of optical absorption in textured semiconductor films. , 1983, Optics letters.

[18]  E. Yablonovitch Statistical ray optics , 1982 .

[19]  N. Bloembergen Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics. , 1973, Applied optics.

[20]  K. H. Jolliffee Optical properties of thin solid films , 1954 .

[21]  T. Moss A Relationship between the Refractive Index and the Infra-Red Threshold of Sensitivity for Photoconductors , 1950 .