A Constrained Least Squares Approach to Interactive Mesh Deformation

In this paper, we propose a constrained least squares approach for stably computing Laplacian deformation with strict positional constraints. In the existing work on Laplacian deformation, strict positional constraints are described using large values of least squares weights, which often cause numerical problems when Laplacians are described using cotangent weights. In our method, we describe strict positional constraints as hard constraints. We solve the combination of hard and soft constraints by constructing a typical least squares matrix form using QR decomposition. In addition, our method can manage shape deformation under over-constraints, such as redundant and conflicting constraints. Our framework achieves excellent performance for interactive deformation of mesh models

[1]  Marc Alexa,et al.  A sketch-based interface for detail-preserving mesh editing , 2005, SIGGRAPH 2005.

[2]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[3]  John M. Snyder,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, SIGGRAPH '05.

[4]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[5]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[6]  Seungyong Lee,et al.  Interactive Multiresolution Editing of Arbitrary Meshes , 1999, Comput. Graph. Forum.

[7]  Leif Kobbelt,et al.  Generating fair meshes with G/sup 1/ boundary conditions , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[8]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[9]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, ACM Trans. Graph..

[10]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[11]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[12]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[13]  Kenji Shimada,et al.  A discrete spring model for generating fair curves and surfaces , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[14]  David Bommes,et al.  Efficient Linear System Solvers for Mesh Processing , 2005, IMA Conference on the Mathematics of Surfaces.

[15]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[16]  Kenneth I. Joy,et al.  Free-form deformations with lattices of arbitrary topology , 1996, SIGGRAPH.

[17]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[18]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  Olga Sorkine,et al.  Laplacian Mesh Processing , 2005 .

[22]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[23]  Malcolm I. G. Bloor,et al.  Using partial differential equations to generate free-form surfaces , 1990, Comput. Aided Des..

[24]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[25]  Sabine Coquillart,et al.  Extended free-form deformation: a sculpturing tool for 3D geometric modeling , 1990, SIGGRAPH.

[26]  Kun Zhou,et al.  Mesh Editing with Gradient Field Manipulation , 2004 .

[27]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[28]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[29]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..