Self-Organisation: Paradigms and Applications

Nowadays applications are becoming more and more complex, and multi-agent systems are proven an efficient paradigm for implementing this complexity, especially when self-organisation principles are applied. However, designing such self-organising systems becomes an issue: even if many agent-oriented methodologies are provided for developing multi-agent systems, only a few are interested in helping designers when applying self-organisation and emergence principles. This chapter aims at expounding some of them with a special focus on the more mature one, ADELFE.

[1]  Jörg Oechssler,et al.  On the Dynamic Foundation of Evolutionary Stability in Continuous Models , 2002, J. Econ. Theory.

[2]  Kristian Lindgren,et al.  Evolutionary dynamics in game-theoretic models , 1996 .

[3]  Franco Zambonelli,et al.  Co-Fields: Towards a Unifying Approach to the Engineering of Swarm Intelligent Systems , 2002, ESAW.

[4]  R. Nelson Recent Evolutionary Theorizing about Economic Change , 2005, Technology, Institutions, and Economic Growth.

[5]  Stephanie Forrest,et al.  A sense of self for Unix processes , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[6]  Franco Zambonelli,et al.  Multi-Agent Systems as Computational Organizations: The Gaia Methodology , 2005 .

[7]  Nicholas R. Jennings,et al.  Foundations of distributed artificial intelligence , 1996, Sixth-generation computer technology series.

[8]  Philippe Kruchten,et al.  The Rational Unified Process: An Introduction , 1998 .

[9]  Brian Henderson-Sellers,et al.  Agent-oriented methodologies , 2005 .

[10]  Maria L. Gini,et al.  A Multi-Agent Negotiation Testbed for Contracting Tasks with Temporal and Precedence Constraints , 2002, Int. J. Electron. Commer..

[11]  Gauthier Picard,et al.  Engineering Adaptive Multi-Agent Systems: The ADELFE Methodology , 2005 .

[12]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[13]  A. Roth The Economist as Engineer: Game Theory, Experimentation, and Computation as Tools for Design Economics , 2002 .

[14]  Timo Honkela,et al.  Websom for Textual Data Mining , 1999, Artificial Intelligence Review.

[15]  Franco Zambonelli,et al.  Multiagent systems as computational organisations: the Gaia methodology , 2005 .

[16]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[17]  Edmund H. Durfee,et al.  An adaptive agent bidding strategy based on stochastic modeling , 1999, AGENTS '99.

[18]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[19]  Sarit Kraus,et al.  Emergent Cooperative Goal-Satisfaction in Large Scale Automated-Agent Systems , 1999, Artif. Intell..

[20]  Rajarshi Das,et al.  Agent-Human Interactions in the Continuous Double Auction , 2001, IJCAI.

[21]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[22]  Maria Gini,et al.  An Evolutionary Framework for Large-Scale Experimentation in Multi-Agent Systems , 2004 .

[23]  Nicholas R. Jennings,et al.  A Roadmap of Agent Research and Development , 2004, Autonomous Agents and Multi-Agent Systems.

[24]  Douglas H. Norrie,et al.  Holonic Control at the Production and Controller Levels , 1999 .

[25]  Franco Zambonelli,et al.  Multiagent System Engineering: The Coordination Viewpoint , 1999, ATAL.

[26]  T. Shallice What ghost in the machine? , 1992, Nature.

[27]  Marco Dorigo,et al.  Ant Colonies for Adaptive Routing in Packet-Switched Communications Networks , 1998, PPSN.

[28]  Mihaela Ulieru,et al.  Emergence of Holonic Enterprises from Multi-Agent Systems : A Fuzzy Evolutionary Approach , 2002 .

[29]  Bruce Edmonds,et al.  Evolving social rationality for MAS using "tags" , 2002, AAMAS '03.

[30]  Ian W. Marshall,et al.  Biologically Inspired Models for Sensor Network Design , 2002 .

[31]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[32]  Edmund H. Durfee,et al.  Model Selection in an Information Economy: Choosing What to Learn , 2002, Comput. Intell..

[33]  D. Cliff Evolutionary Optimization of Parameter Sets for Adaptive Software-Agent Traders in Continuous Double Auction Markets , 2001 .

[34]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[35]  Mei Wang,et al.  Service Centric Brokering in Dynamic E-business Agent Communities , 2001, J. Electron. Commer. Res..

[36]  H. Van Dyke Parunak,et al.  Managing Emergent Behavior in Distributed Control Systems , 1997 .

[37]  Gauthier Picard,et al.  Tools for Self-Organizing Applications Engineering , 2003, Engineering Self-Organising Systems.

[38]  Leigh Tesfatsion,et al.  Agent-Based Computational Economics: Growing Economies From the Bottom Up , 2002, Artificial Life.

[39]  Gauthier Picard,et al.  ADELFE: A Methodology for Adaptive Multi-agent Systems Engineering , 2002, ESAW.

[40]  Franco Zambonelli,et al.  Self-Organization in Multi Agent Systems: A Middleware Approach , 2003, Engineering Self-Organising Systems.

[41]  Onn Shehory,et al.  Evaluation of modeling techniques for agent-based systems , 2001, AGENTS '01.

[42]  Guy Theraulaz,et al.  Phase-ordering kinetics of cemetery organization in ants , 1998 .

[43]  Nicholas Carriero,et al.  Tuple analysis and partial evaluation strategies in the Linda precompiler , 1990 .

[44]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[45]  V. A. Vittikh,et al.  Multi-agent Systems For Modelling OfSelf-organization And Cooperation Processes , 1970 .

[46]  Martin L. Griss,et al.  Multi-agent cooperation, dynamic workflow and XML for e-commerce automation , 2000, AGENTS '00.

[47]  Hendrik Van Brussel,et al.  Multi-agent Coordination and Control Using Stigmergy Applied to Manufacturing Control , 2001, EASSS.

[48]  C. Lee Giles,et al.  Self-Organization and Identification of Web Communities , 2002, Computer.

[49]  David Gelernter,et al.  Generative communication in Linda , 1985, TOPL.

[50]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[51]  François Nédélec,et al.  Self-organisation and forces in the microtubule cytoskeleton. , 2003, Current opinion in cell biology.

[52]  T. Schelling Micromotives and Macrobehavior , 1978 .

[53]  S. Kauffman At Home in the Universe: The Search for the Laws of Self-Organization and Complexity , 1995 .

[54]  Ivar Jacobson,et al.  The unified modeling language reference manual , 2010 .

[55]  Andrea Omicini,et al.  Programming MAS with Artifacts , 2005, PROMAS.

[56]  Jeffrey O. Kephart,et al.  Dynamic pricing by software agents , 2000, Comput. Networks.

[57]  K. Ducatel,et al.  Scenarios for Ambient Intelligence in 2010 Final Report , 2001 .

[58]  Leigh Tesfatsion,et al.  A computational laboratory for evolutionary trade networks , 2001, IEEE Trans. Evol. Comput..

[59]  Ngoc Thanh Nguyen,et al.  A Mobile Agent Approach to Intrusion Detection in Network Systems , 2005, KES.

[60]  Ivar Jacobson,et al.  The Unified Software Development Process , 1999 .

[61]  Masato Matsuo,et al.  Jack-in-the-Net: Adaptive Networking Architec- ture for Service Emergence , 2001 .

[62]  Mihaela Ulieru,et al.  INTERNET-ENABLED SOFT COMPUTING HOLARCHIES FOR E-HEALTH APPLICATIONS -Soft Computing Enhancing the Internet and the Internet Enhancing Soft Computing- , 2004 .

[63]  K. Small,et al.  URBAN SPATIAL STRUCTURE. , 1997 .

[64]  Katharina Werbach,et al.  Syndication--the emerging model for business in the Internet era. , 2000, Harvard business review.

[65]  E. Mills,et al.  A Model of Market Areas with Free Entry , 1964, Journal of Political Economy.

[66]  Kristina Lerman,et al.  Design and Mathematical Analysis of Agent-Based Systems , 2000, FAABS.

[67]  William A. Wheeler,et al.  Beyond Business Process Reengineering: Towards the Holonic Enterprise , 1995 .

[68]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[69]  John Mylopoulos,et al.  Tropos: A Requirements-Driven Methodology for Agent-Oriented Software , 2005 .

[70]  Pattie Maes,et al.  Dynamic pricing strategies under a finite time horizon , 2001, EC '01.

[71]  O. Holland Multiagent systems : Lessons from social insects and collective robotics , 2002 .

[72]  Franco Zambonelli,et al.  A Study of Some Multi-agent Meta-models , 2004, AOSE.

[73]  Chris Melhuish,et al.  Stigmergy, Self-Organization, and Sorting in Collective Robotics , 1999, Artificial Life.

[74]  Omer F. Rana,et al.  Coordinated learning to support resource management in computational grids , 2002, Proceedings. Second International Conference on Peer-to-Peer Computing,.