Progressive amorphization of GeSbTe phase-change material under electron beam irradiation

Fast and reversible phase transitions in chalcogenide phase-change materials (PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental interests, but also make PCMs based random access memory (PRAM) a leading candidate for non-volatile memory and neuromorphic computing devices. To RESET the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions firstly to a liquid state and then to an amorphous state, corresponding to an abrupt change in electrical resistance. In this work, we demonstrate a progressive amorphization process in GeSb2Te4 thin films under electron beam irradiation on transmission electron microscope (TEM). Melting is shown to be completely absent by the in situ TEM experiments. The progressive amorphization process resembles closely the cumulative crystallization process that accompanies a continuous change in electrical resistance. Our work suggests that if displacement forces can be implemented properly, it should be possible to emulate symmetric neuronal dynamics by using PCMs.

[1]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[2]  A. Lotnyk,et al.  Ultrafast interfacial transformation from 2D- to 3D-bonded structures in layered Ge-Sb-Te thin films and heterostructures. , 2018, Nanoscale.

[3]  A. Lotnyk,et al.  Direct imaging of crystal structure and defects in metastable Ge2Sb2Te5 by quantitative aberration-corrected scanning transmission electron microscopy , 2014 .

[4]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[5]  R. Egerton,et al.  Mechanisms of radiation damage in beam‐sensitive specimens, for TEM accelerating voltages between 10 and 300 kV , 2012, Microscopy research and technique.

[6]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[7]  Bin Zhang,et al.  Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material , 2016 .

[8]  Lu Lu,et al.  Genesis and Effects of Swapping Bilayers in Hexagonal GeSb2Te4 , 2018, Chemistry of Materials.

[9]  X. Miao,et al.  Direct observation of partial disorder and zipperlike transition in crystalline phase change materials , 2019, Physical Review Materials.

[10]  John C. H. Spence,et al.  On the dose-rate threshold of beam damage in TEM , 2012 .

[11]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[12]  Noboru Yamada,et al.  Erasable Phase-Change Optical Materials , 1996 .

[13]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[14]  M. Wuttig,et al.  Strain Development and Damage Accumulation Under Ion Irradiation of Polycrystalline Ge-Sb-Te Alloys , 2017 .

[15]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[16]  Zhitang Song,et al.  Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5 , 2019, Communications Chemistry.

[17]  Songlin Feng,et al.  Direct observation of metastable face-centered cubic Sb2Te3 crystal , 2016, Nano Research.

[18]  Heiner Giefers,et al.  Mixed-precision in-memory computing , 2017, Nature Electronics.

[19]  Abu Sebastian,et al.  Tutorial: Brain-inspired computing using phase-change memory devices , 2018, Journal of Applied Physics.

[20]  Bernd Rauschenbach,et al.  Atomic structure and dynamic reconfiguration of layered defects in van der Waals layered Ge-Sb-Te based materials , 2017 .

[21]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[22]  C. David Wright,et al.  In-memory computing on a photonic platform , 2018, Science Advances.

[23]  J. Hosson,et al.  Influence of electron beam exposure on crystallization of phase-change materials , 2007 .

[24]  A Hirata,et al.  Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials. , 2018, Physical review letters.

[25]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[26]  A. Alberti,et al.  Structural and electronic transitions in Ge2Sb2Te5 induced by ion irradiation damage , 2016 .

[27]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[28]  Wei Zhang,et al.  In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon , 2016, NPG Asia Materials.

[29]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[30]  Martin Ehrhardt,et al.  Real-space imaging of atomic arrangement and vacancy layers ordering in laser crystallised Ge2Sb2Te5 phase change thin films , 2016 .

[31]  J. Hosson,et al.  Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of Gexsb2Te3+x (x=1,2,3) phase change material , 2002 .

[32]  P. Ashwin,et al.  Phase‐change processors, memristors and memflectors , 2012 .

[33]  E. Ma,et al.  Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. , 2009, Physical review letters.

[34]  X. Qu,et al.  Damage and recovery induced by a high energy e-beam in a silicon nanofilm , 2017 .

[35]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[36]  H.-S. Philip Wong,et al.  Phase-Change Memory—Towards a Storage-Class Memory , 2017, IEEE Transactions on Electron Devices.

[37]  M. Wuttig,et al.  Thin Films of Ge–Sb–Te-Based Phase Change Materials: Microstructure and in Situ Transformation , 2011 .

[38]  J. Yang,et al.  Memristive crossbar arrays for brain-inspired computing , 2019, Nature Materials.

[39]  Matthias Wuttig,et al.  A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials , 2017, Materials.

[40]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[41]  Noboru Yamada,et al.  Structural investigation of GeSb 2 Te 4 : A high-speed phase-change material , 2004 .

[42]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[43]  A. Lotnyk,et al.  In situ observations of the reversible vacancy ordering process in van der Waals-bonded Ge-Sb-Te thin films and GeTe-Sb2Te3 superlattices. , 2019, Nanoscale.

[44]  E. Ma,et al.  Elastic strain engineering for unprecedented materials properties , 2014 .

[45]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[46]  Wei Zhang,et al.  Designing crystallization in phase-change materials for universal memory and neuro-inspired computing , 2019, Nature Reviews Materials.

[47]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[48]  Yuchao Yang,et al.  Probing memristive switching in nanoionic devices , 2018 .

[49]  Leon O. Chua How we predicted the memristor , 2018 .

[50]  J. Yang,et al.  Robust memristors based on layered two-dimensional materials , 2018, 1801.00530.

[51]  Yusuf Leblebici,et al.  Neuromorphic computing with multi-memristive synapses , 2017, Nature Communications.

[52]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .