Fetal whole‐heart 4D imaging using motion‐corrected multi‐planar real‐time MRI

To develop an MRI acquisition and reconstruction framework for volumetric cine visualization of the fetal heart and great vessels in the presence of maternal and fetal motion.

[1]  Daniel Rueckert,et al.  Assessment of brain growth in early childhood using deformation-based morphometry , 2008, NeuroImage.

[2]  Mike Seed,et al.  Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing , 2017, Journal of Cardiovascular Magnetic Resonance.

[3]  N J Pelc,et al.  Balanced phase‐contrast steady‐state free precession (PC‐SSFP): A novel technique for velocity encoding by gradient inversion , 2003, Magnetic resonance in medicine.

[4]  J V Hajnal,et al.  Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure , 2010, Physics in medicine and biology.

[5]  Paul Aljabar,et al.  Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection , 2017, Magnetic resonance in medicine.

[6]  J M Simpson,et al.  Repeatability of echocardiographic measurements in the human fetus , 2002, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[7]  Colin Studholme,et al.  Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. , 2006, Academic radiology.

[8]  J. Rychik,et al.  Diagnosis and Treatment of Fetal Cardiac Disease: A Scientific Statement From the American Heart Association , 2014, Circulation.

[9]  Reza Razavi,et al.  Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study , 2019, The Lancet.

[10]  P Mansfield,et al.  An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. , 1995, The British journal of radiology.

[11]  Simon K. Warfield,et al.  Robust Super-Resolution Volume Reconstruction From Slice Acquisitions: Application to Fetal Brain MRI , 2010, IEEE Transactions on Medical Imaging.

[12]  Mary A. Rutherford,et al.  Reconstruction of fetal brain MRI with intensity matching and complete outlier removal , 2012, Medical Image Anal..

[13]  Peter Boesiger,et al.  k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations , 2003, Magnetic resonance in medicine.

[14]  Jon-Fredrik Nielsen,et al.  Referenceless phase velocity mapping using balanced SSFP , 2009, Magnetic resonance in medicine.

[15]  Andrew C Larson,et al.  Comparison of self‐gated cine MRI retrospective cardiac synchronization algorithms , 2008, Journal of magnetic resonance imaging : JMRI.

[16]  Michael Markl,et al.  On flow effects in balanced steady‐state free precession imaging: Pictorial description, parameter dependence, and clinical implications , 2004, Journal of magnetic resonance imaging : JMRI.

[17]  Andrew C Larson,et al.  Self‐gated cardiac cine MRI , 2004, Magnetic resonance in medicine.

[18]  Michael Lustig,et al.  Screen-printed flexible MRI receive coils , 2016, Nature Communications.

[19]  Mike Seed,et al.  Accelerated MRI of the fetal heart using compressed sensing and metric optimized gating , 2017, Magnetic resonance in medicine.

[20]  Peter Boesiger,et al.  Optimizing spatiotemporal sampling for k‐t BLAST and k‐t SENSE: Application to high‐resolution real‐time cardiac steady‐state free precession , 2005, Magnetic resonance in medicine.

[21]  Daniel Rueckert,et al.  MRI of Moving Subjects Using Multislice Snapshot Images With Volume Reconstruction (SVR): Application to Fetal, Neonatal, and Adult Brain Studies , 2007, IEEE Transactions on Medical Imaging.

[22]  S. Ho,et al.  Sequential segmental analysis in complex fetal cardiac abnormalities: a logical approach to diagnosis , 2005, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[23]  M. Sklansky,et al.  Spatio‐temporal image correlation (STIC): new technology for evaluation of the fetal heart , 2003, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[24]  S. Yoo,et al.  Sequential segmental approach to fetal congenital heart disease , 1999, Cardiology in the Young.

[25]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[26]  Kun Sun,et al.  Feasibility Study on Prenatal Cardiac Screening Using Four-Dimensional Ultrasound with Spatiotemporal Image Correlation: A Multicenter Study , 2016, PloS one.

[27]  Matthias Stuber,et al.  Fetal cardiac cine magnetic resonance imaging in utero , 2017, Scientific Reports.

[28]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[29]  Daniel Rueckert,et al.  Automated Localization of Fetal Organs in MRI Using Random Forests with Steerable Features , 2015, MICCAI.

[30]  W. Segars,et al.  MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance , 2014, Journal of Cardiovascular Magnetic Resonance.

[31]  Anthony H. Aletras,et al.  Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating , 2018, Journal of Cardiovascular Magnetic Resonance.

[32]  Daniel Rueckert,et al.  Fast Volume Reconstruction from Motion Corrupted Stacks of 2D Slices , 2015, IEEE Transactions on Medical Imaging.

[33]  L. Shulman,et al.  Magnetic resonance imaging in the normal fetal heart and in congenital heart disease , 2012, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.