Functional Itô versus Banach space stochastic calculus and strict solutions of semilinear path-dependent equations

Functional It\^o calculus was introduced in order to expand a functional $F(t, X_{\cdot+t}, X_t)$ depending on time $t$, past and present values of the process $X$. Another possibility to expand $F(t, X_{\cdot+t}, X_t)$ consists in considering the path $X_{\cdot+t}=\{X_{x+t},\,x\in[-T,0]\}$ as an element of the Banach space of continuous functions on $C([-T,0])$ and to use Banach space stochastic calculus. The aim of this paper is threefold. 1) To reformulate functional It\^o calculus, separating time and past, making use of the regularization procedures which matches more naturally the notion of horizontal derivative which is one of the tools of that calculus. 2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. 3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional It\^o calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an It\^o stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation.

[1]  Rama Cont,et al.  Functional Ito calculus and stochastic integral representation of martingales , 2010, 1002.2446.

[2]  Francesco Russo,et al.  Infinite dimensional stochastic calculus via regularization , 2010 .

[3]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .

[4]  Bruno Dupire,et al.  Functional Itô Calculus , 2009 .

[5]  Francesco Russo,et al.  Generalized covariation and extended Fukushima decompositions for Banach valued processes. Application to windows of Dirichlet processes. , 2011, 1105.4419.

[6]  Rama Cont,et al.  A functional extension of the Ito formula , 2010 .

[7]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[8]  P. Vallois,et al.  Intégrales progressive, rétrograde et symétrique de processus non adaptés , 1991 .

[9]  Rama Cont,et al.  Change of variable formulas for non-anticipative functionals on path space ✩ , 2010, 1004.1380.

[10]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[11]  F. Russo,et al.  Strong-viscosity Solutions: Semilinear Parabolic PDEs and Path-dependent PDEs , 2015, 1505.02927.

[12]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[13]  F. Russo,et al.  Clark–Ocone type formula for non-semimartingales with finite quadratic variation , 2010, 1005.3608.

[14]  Ivan Nourdin,et al.  Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales , 2003 .

[15]  R. Cooke Real and Complex Analysis , 2011 .

[16]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[17]  Francesco Russo,et al.  The generalized covariation process and Ito formula , 1995 .

[18]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[19]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[20]  S. Peng,et al.  Backward stochastic differential equations and quasilinear parabolic partial differential equations , 1992 .

[21]  F. Russo,et al.  The covariation for Banach space valued processes and applications , 2013, 1301.5715.

[22]  Alberto Ohashi,et al.  Weak Functional It\^o Calculus and Applications , 2014, 1408.1423.

[23]  Elements of Stochastic Calculus via Regularization , 2006, math/0603224.

[24]  Francesco Russo,et al.  Generalized covariation for Banach space valued processes, Itô formula and applications , 2010, 1012.2484.

[25]  Jin Ma,et al.  Pathwise Taylor Expansions for Random Fields on Multiple Dimensional Paths , 2013, 1310.0517.

[26]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[27]  F. Flandoli,et al.  An infinite-dimensional approach to path-dependent Kolmogorov equations , 2013, 1312.6165.