A model predictive control approach with relevant identification in dynamic PLS framework

Abstract In this paper, a generalized predictive control (GPC) scheme under a dynamic partial least squares (PLS) framework is proposed. At the modeling stage, a model predictive control relevant identification (MRI) approach is used to improve the identification of the model. Within PLS framework, the MIMO system can be automatically decomposed into several SISO subsystems in the latent space. For each subsystem, MRI is implemented and GPC is designed independently. With the advantage of MRI and PLS framework, fewer parameters are needed to be estimated in the identification stage, nonsquare and ill-conditioned system can be handled naturally, control parameters tuning is easier and better control performance can be obtained. Furthermore, the computing time of control action which is very crucial for GPC on-line application decreases since each GPC is running in SISO subsystem in parallel. The results of two simulation examples and a laboratory experiment demonstrate the merit of the proposed method.

[1]  D. Seborg,et al.  Estimating product composition profiles in batch distillation via partial least squares regression , 2004 .

[2]  W. Harmon Ray,et al.  Dynamic PLS modelling for process control , 1993 .

[3]  Johan U. Backstrom,et al.  Quadratic programming algorithms for large-scale model predictive control , 2002 .

[4]  John F. MacGregor,et al.  Modeling of dynamic systems using latent variable and subspace methods , 2000 .

[5]  D. Laurí,et al.  PLS-based model predictive control relevant identification: PLS-PH algorithm , 2010 .

[6]  A. Höskuldsson PLS regression methods , 1988 .

[7]  Hong Zhao,et al.  A nonlinear industrial model predictive controller using integrated PLS and neural net state-space model☆ , 1999 .

[8]  Sirish L. Shah,et al.  A Dynamic PLS Framework for Constrained Model Predictive Control , 1997 .

[9]  Sirish L. Shah,et al.  MPC relevant identification––tuning the noise model , 2004 .

[10]  Sirish L. Shah,et al.  Modeling and control of multivariable processes: Dynamic PLS approach , 1997 .

[11]  J. A. Rossiter,et al.  Data-driven latent-variable model-based predictive control for continuous processes , 2010 .

[12]  Junghui Chen,et al.  Applying Partial Least Squares Based Decomposition Structure to Multiloop Adaptive Proportional-Integral-Derivative Controllers in Nonlinear Processes , 2004 .

[13]  Biao Huang,et al.  Model predictive control relevant identification and validation , 2003 .

[14]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[15]  Sirish L. Shah,et al.  Constrained nonlinear MPC using hammerstein and wiener models: PLS framework , 1998 .

[16]  S. Shah,et al.  Identification for long-range predictive control , 1991 .

[17]  W. H. Ray,et al.  High‐Performance multivariable control strategies for systems having time delays , 1986 .

[18]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[19]  Jun Liang,et al.  Multi-loop adaptive internal model control based on a dynamic partial least squares model , 2011 .

[20]  S. García-Nieto,et al.  Model predictive control relevant identification: multiple input multiple output against multiple input single output , 2010 .

[21]  Fontes C.H.O,et al.  Multivariable correlation analysis and its application to an industrial polymerization reactor , 2001 .

[22]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[23]  S. Qin Recursive PLS algorithms for adaptive data modeling , 1998 .

[24]  Junghui Chen,et al.  Multiloop PID controller design using partial least squares decoupling structure , 2005 .

[25]  W. Harmon Ray,et al.  Chemometric methods for process monitoring and high‐performance controller design , 1992 .

[26]  N. L. Ricker The use of biased least-squares estimators for parameters in discrete-time pulse-response models , 1988 .

[27]  Frauke Oldewurtel,et al.  Use of partial least squares within the control relevant identification for buildings , 2013 .

[28]  Thomas J. McAvoy,et al.  A Data-Based Process Modeling Approach and its Applications , 1992 .

[29]  M. Embiruçu,et al.  Multirate multivariable generalized predictive control and its application to a slurry reactor for ethylene polymerization , 2006 .

[30]  A. Çinar,et al.  PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space , 1997 .

[31]  A. Simoglou,et al.  Dynamic multivariate statistical process control using partial least squares and canonical variate analysis , 1999 .

[32]  Sirish L. Shah,et al.  Bias distribution in MPC relevant identification , 2002 .

[33]  Jun Liang,et al.  Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model , 2012 .

[34]  S. Shah,et al.  A control-relevant identification strategy for GPC , 1992 .

[35]  Bin Hu,et al.  Multi-loop Internal Model Controller Design Based on a Dynamic PLS Framework , 2010 .