Accurate Solution of Bayesian Inverse Uncertainty Quantification Problems Combining Reduced Basis Methods and Reduction Error Models

Computational inverse problems related to partial differential equations (PDEs) often contain nuisance parameters that cannot be effectively identified but still need to be considered as part of the problem. The objective of this work is to show how to take advantage of a reduced order framework to speed up Bayesian inversion on the identifiable parameters of the system, while marginalizing away the (potentially large number of) nuisance parameters. The key ingredients are twofold. On the one hand, we rely on a reduced basis (RB) method, equipped with computable a posteriori error bounds, to speed up the solution of the forward problem. On the other hand, we develop suitable reduction error models (REMs) to quantify in an inexpensive way the error between the full-order and the reduced-order approximation of the forward problem, in order to gauge the effect of this error on the posterior distribution of the identifiable parameters. Numerical results dealing with inverse problems governed by elliptic PDEs ...

[1]  David Amsallem,et al.  An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .

[2]  Harvey Thomas Banks,et al.  Nondestructive evaluation using a reduced order computational methodology , 2000 .

[3]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[4]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[5]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[6]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[7]  W. Wall,et al.  Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme , 2014, Biomechanics and Modeling in Mechanobiology.

[8]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[9]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[10]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[11]  Gianluigi Rozza,et al.  Generalized Reduced Basis Methods and n-Width Estimates for the Approximation of the Solution Manifold of Parametric PDEs , 2013 .

[12]  A. Nouy,et al.  Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics , 2012 .

[13]  Andrea Manzoni,et al.  Heuristic strategies for the approximation of stability factors in quadratically nonlinear parametrized PDEs , 2015, Adv. Comput. Math..

[14]  Jens L. Eftang,et al.  Reduced basis methods for parametrized partial differential equations , 2011 .

[15]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[16]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[17]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[18]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[19]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[20]  D. Lucor,et al.  Adaptive Bayesian Inference for Discontinuous Inverse Problems, Application to Hyperbolic Conservation Laws , 2014 .

[21]  David Galbally,et al.  Nonlinear model reduction for uncertainty quantification in large-scale inverse problems : application to nonlinear convection-diffusion-reaction equation , 2008 .

[22]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[23]  Jari Kaipio,et al.  Reduced-order model for electrical impedance tomography based on proper orthogonal decomposition , 2012, 1207.0914.

[24]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[25]  J. Kaipio,et al.  RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH , 2011 .

[26]  Jinglai Li,et al.  Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems , 2013, SIAM J. Sci. Comput..

[27]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[28]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[29]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[30]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[31]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[32]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[33]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[34]  Dana H. Brooks,et al.  Improved Performance of Bayesian Solutions for Inverse Electrocardiography Using Multiple Information Sources , 2006, IEEE Transactions on Biomedical Engineering.

[35]  Mihai Anitescu,et al.  Proper orthogonal decompositions in multifidelity uncertainty quantification of complex simulation models , 2014, Int. J. Comput. Math..

[36]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[37]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[38]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[39]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[40]  Omar Ghattas,et al.  An Analysis of Infinite Dimensional Bayesian Inverse Shape Acoustic Scattering and Its Numerical Approximation , 2014, SIAM/ASA J. Uncertain. Quantification.

[41]  A. Quarteroni,et al.  A reduced computational and geometrical framework for inverse problems in hemodynamics , 2013, International journal for numerical methods in biomedical engineering.

[42]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..

[43]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[44]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[45]  Kevin Carlberg,et al.  The ROMES method for statistical modeling of reduced-order-model error , 2014, SIAM/ASA J. Uncertain. Quantification.