Allocation de ressource opportuniste dans les réseaux sans fil multicellulaires. (Opportunistic resource allocation in wireless multicellular networks)

La forte croissance du trafic dans les reseaux mobiles s'accompagne d'une augmentation de son heterogeneite, tant dans l'espace qu'au cours du temps. Cette these porte sur des algorithmes d’ordonnancement adaptes a des trafics avec des zones a forte concentration et variables dans le temps. Nous proposons un mecanisme de pret de la ressource spectrale d'une cellule en sous-charge a une voisine en surcharge combinee a un ordonnancement reactif au sein de chaque cellule. Nous nous interessons aussi a l’architecture Cloud Radio Access Network qui separe les tetes de transmission radio (Remote Radio Heads, RRHs) des unites de traitement en bande de base (Baseband Units, BBUs). L’interconnexion entre les BBUs et les RRHs se fait selon deux modes. Le premier est appele association bi-univoque et consiste a allouer les unites de ressources de la trame radio d’une BBU a une seule RRH. Dans le second mode, appele association multiple, une BBU peut gerer plusieurs RRHs. Nous proposons un mode d’association hybride dans lequel les unites de ressource de chaque trame sont reparties en deux tranches. La premiere constitue une tranche non partagee qui est allouee aux utilisateurs centraux selon l’association bi-univoque afin d’augmenter le debit notamment a haute charge de trafic. La deuxieme tranche est constituee par une quantite d’unites de ressources partagees par un groupe de RRHs appartenant au meme BBU. Cette tranche commune est configuree en association multiple et est allouee aux utilisateurs frontaliers et mobiles. Nous montrons que le mode hybride reduit les interferences intercellulaires, diminue le nombre de handover inter-BBU et ameliore la consommation energetique.

[1]  Khaled Ben Letaief,et al.  Multiuser OFDM with adaptive subcarrier, bit, and power allocation , 1999, IEEE J. Sel. Areas Commun..

[2]  Fabrizio Granelli,et al.  Dynamic strict fractional frequency reuse for software-defined 5G networks , 2016, 2016 IEEE International Conference on Communications (ICC).

[3]  Suresh Kalyanasundaram,et al.  Frequency Selective OFDMA Scheduler with Limited Feedback , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[4]  Raymond Knopp,et al.  Information capacity and power control in single-cell multiuser communications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[5]  Haralabos C. Papadopoulos,et al.  " A Model for Generating On-Off Speech Patterns in Two-Way Conversation , 2017 .

[6]  Christian Lanzani,et al.  Advanced multimode radio for wireless & mobile broadband communication , 2009, 2009 European Wireless Technology Conference.

[7]  Jing Wang,et al.  Distributed wireless communication system: a new architecture for future public wireless access , 2003, IEEE Commun. Mag..

[8]  Umberto Spagnolini,et al.  Interference Coordination Vs. Interference Randomization in Multicell 3GPP LTE System , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[9]  Mohamad Yassin Inter-Cell Interference Coordination in Wireless Networks. (Coordination des interférences intercellulaires dans les réseaux sans-fil) , 2015 .

[10]  Gustavo de Veciana,et al.  “Wireless networks without edges”: Dynamic radio resource clustering and user scheduling , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[11]  Alexander Golitschek Edler von Elbwart,et al.  Fairness and throughput analysis for generalized proportional fair frequency scheduling in OFDMA , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[12]  Hui Liu,et al.  Downlink Radio Resource Allocation for Multi-Cell OFDMA System , 2006, IEEE Transactions on Wireless Communications.

[13]  Vincenzo Mancuso,et al.  BASICS: Scheduling base stations to mitigate interferences in cellular networks , 2013, 2013 IEEE 14th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM).

[14]  Sarmad Sohaib,et al.  Centralized dynamic frequency allocation for cell-edge demand satisfaction in fractional frequency reuse networks , 2017, Telecommun. Syst..

[15]  Hiroyuki Seki,et al.  De-Centralized Dynamic ICIC Using X2 Interfaces for Downlink LTE Systems , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[16]  Joong Soo Ma,et al.  Mobile Communications , 2003, Lecture Notes in Computer Science.

[17]  Dimitra I. Kaklamani,et al.  Fractional frequency reuse techniques for multi-cellular WiMAX networks , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[18]  Byeong Gi Lee,et al.  A proportional-fair power allocation scheme for fair and efficient multiuser OFDM systems , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[19]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[20]  Mahmoud Ammar,et al.  A dynamic transmission strategy based on network slicing for cloud radio access networks , 2018, 2018 Wireless Days (WD).

[21]  C.-C. Jay Kuo,et al.  Dynamic fractional frequency reuse (D-FFR) for multicell OFDMA networks using a graph framework , 2013, Wirel. Commun. Mob. Comput..

[22]  Vikram Krishnamurthy,et al.  Cognitive Base Stations in LTE/3GPP Femtocells: A Correlated Equilibrium Game-Theoretic Approach , 2011, IEEE Transactions on Communications.

[23]  Seokhyun Yoon,et al.  Interference mitigation in heterogeneous cellular networks of macro and femto cells , 2011, ICTC 2011.

[24]  Petar Popovski,et al.  D6.6 Final report on the METIS 5G system concept and technology roadmap , 2014 .

[25]  Dacheng Yang,et al.  A Novel Multi-Cell OFDMA System Structure using Fractional Frequency Reuse , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[26]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[27]  Mahmoud Naghshineh,et al.  Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey , 2000, IEEE Communications Surveys & Tutorials.

[28]  Lajos Hanzo,et al.  Coherent versus Non-coherent and Cooperative Turbo Transceivers , 2010 .

[29]  Ergin Dinc,et al.  On dynamic fractional frequency reuse for OFDMA cellular networks , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[30]  Toktam Mahmoodi,et al.  Network slicing management & prioritization in 5G mobile systems , 2016 .

[31]  Kinda Khawam,et al.  Centralized and distributed RRH clustering in Cloud Radio Access Networks , 2017, 2017 IEEE Symposium on Computers and Communications (ISCC).

[32]  H. Tullberg,et al.  The Foundation of the Mobile and Wireless Communications System for 2020 and Beyond: Challenges, Enablers and Technology Solutions , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[33]  Alfonso Bahillo Martinez Evaluation of multiuser scheduling algorithm in OFDM for different services , 2006 .

[34]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[35]  Michael S. Berger,et al.  Cloud RAN for Mobile Networks—A Technology Overview , 2015, IEEE Communications Surveys & Tutorials.

[36]  Jeffrey G. Andrews,et al.  Spectrum allocation in tiered cellular networks , 2009, IEEE Transactions on Communications.

[37]  W. C. Jakes,et al.  Mobile Radio Propagation , 1974 .

[38]  Giuseppe Piro,et al.  An LTE module for the ns-3 network simulator , 2011, SimuTools.

[39]  Fredric M. Ham,et al.  Performance evaluation of static frequency reuse techniques for OFDMA cellular networks , 2014, Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control.

[40]  Jeffrey G. Andrews,et al.  Comparison of Fractional Frequency Reuse Approaches in the OFDMA Cellular Downlink , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[41]  Kwang-Cheng Chen,et al.  Radio Resource Management for QoS Guarantees in Cyber-Physical Systems , 2012, IEEE Transactions on Parallel and Distributed Systems.

[42]  P. M. Grant,et al.  Digital communications. 3rd ed , 2009 .

[43]  Stephan Freytag,et al.  Mobile Radio Networks Networking Protocols And Traffic Performance , 2016 .

[44]  A. De Pasquale,et al.  Optimizing frequency planning in the GSM system , 1998, ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384).

[45]  M. M. Peritsky,et al.  Statistically-Optimum Dynamic Server Assignment in Systems with Interfering Servers , 1972, IEEE Trans. Commun..

[46]  Cédric Gueguen,et al.  A Fair Opportunistic Access Scheme for Multiuser OFDM Wireless Networks , 2009, EURASIP J. Wirel. Commun. Netw..

[47]  Qing Wang,et al.  Wireless network cloud: Architecture and system requirements , 2010, IBM J. Res. Dev..

[48]  Cyril Leung,et al.  A Survey of Scheduling and Interference Mitigation in LTE , 2010, J. Electr. Comput. Eng..

[49]  Jan Markendahl,et al.  EU FP7 INFSO-ICT-317669 METIS, D1.1 Scenarios, requirements and KPIs for 5G mobile and wireless system , 2013 .

[50]  Pramod K. Varshney,et al.  Adaptive load balancing with preemption for multimedia cellular networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[51]  Bernhard Walke Mobile Radio Networks: Networking and Protocols , 1999 .

[52]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[53]  Mohamad Assaad Optimal Fractional Frequency Reuse (FFR) in Multicellular OFDMA System , 2008, 2008 IEEE 68th Vehicular Technology Conference.

[54]  Kinda Khawam,et al.  Interference-aware clustering in cloud radio access networks , 2017, 2017 IEEE 6th International Conference on Cloud Networking (CloudNet).

[55]  Ying-Chang Liang,et al.  Cognitive radio resource management for future cellular networks , 2014, IEEE Wireless Communications.

[56]  Erik Dahlman,et al.  3G Evolution: HSPA and LTE for Mobile Broadband , 2007 .

[57]  Hua Zhang,et al.  Orthogonal Frequency Division Multiplexing for Wireless Communications , 2004 .

[58]  Mohamad Yassin,et al.  Autonomous and dynamic inter-cell interference coordination techniques for future wireless networks , 2017, 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[60]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[61]  Lu Zhao,et al.  Centralized scheduling for joint transmission coordinated multi-point in LTE-Advanced , 2010, 2010 International ITG Workshop on Smart Antennas (WSA).

[62]  Ming Zhang,et al.  Comparisons of channel assignment strategies in cellular mobile telephone systems , 1989, IEEE International Conference on Communications, World Prosperity Through Communications,.

[63]  Laurie G. Cuthbert,et al.  Towards intelligent geographic load balancing for mobile cellular networks , 2003, IEEE Trans. Syst. Man Cybern. Part C.

[64]  Mohamad Yassin,et al.  Inter-cellular scheduler for 5G wireless networks , 2016, Phys. Commun..

[65]  V. Roman,et al.  Broadband wireless access solutions based on OFDM access in IEEE 802.16 , 2002 .

[66]  S.M. Elnoubi,et al.  A new frequency channel assignment algorithm in high capacity mobile communication systems , 1982, IEEE Transactions on Vehicular Technology.

[67]  Samer Lahoud,et al.  RRH clustering in cloud radio access networks , 2015, 2015 International Conference on Applied Research in Computer Science and Engineering (ICAR).

[68]  Joan J. Olmos,et al.  On the need for dynamic downlink intercell interference coordination for realistic Long Term Evolution deployments , 2014, Wirel. Commun. Mob. Comput..

[69]  Haitham S. Hamza,et al.  A Survey on Inter-Cell Interference Coordination Techniques in OFDMA-Based Cellular Networks , 2013, IEEE Communications Surveys & Tutorials.

[70]  Jiming Chen,et al.  Adaptive soft frequency reuse scheme for inbuilding dense femtocell networks , 2012, 2012 1st IEEE International Conference on Communications in China (ICCC).

[71]  Vincent K. N. Lau,et al.  The Mobile Radio Propagation Channel , 2007 .

[72]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[73]  T. Kahwa,et al.  A Hybrid Channel Assignment Scheme in Large-Scale, Cellular-Structured Mobile Communication Systems , 1978, IEEE Trans. Commun..

[74]  Stefan Parkvall,et al.  LTE: the evolution of mobile broadband , 2009, IEEE Communications Magazine.

[75]  Satoshi Nagata,et al.  Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges , 2012, IEEE Communications Magazine.

[76]  Mahmoud Ammar,et al.  A Dynamic Inter-cellular Bandwidth Fair Sharing scheduler for future wireless networks , 2017, Phys. Commun..

[77]  Mohamad Yassin,et al.  Survey of ICIC techniques in LTE networks under various mobile environment parameters , 2017, Wirel. Networks.

[78]  Thierry Turletti,et al.  A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks , 2014, IEEE Communications Surveys & Tutorials.

[79]  Weidong Xiang,et al.  An OFDM-TDMA/SA MAC Protocol with QoS Constraints for Broadband Wireless LANs , 2006, Wirel. Networks.