Crack propagation in multilayer thin-film structures of electronic packages using the peridynamic theory

Abstract This paper presents an application of the peridynamic theory to predict crack paths in multilayer thin-film structures of electronic packages. The peridynamic theory is a nonlocal continuum theory that has an inherent crack initiation and growth criterion. Specifically, the peridynamic theory is employed to model cross-sectional nanoindentation, an experimental technique used for characterizing interfacial adhesion and observing crack paths. Cross-sectional indentation experiments previously conducted on blanket and patterned thin-film structures were simulated. The predicted crack propagation paths in both blanket and patterned multilayer thin-film structures compare well with the results from cross-sectional nanoindentation experiments.

[1]  Stewart Andrew Silling,et al.  Dynamic fracture modeling with a meshfree peridynamic code , 2003 .

[2]  Erdogan Madenci,et al.  Effects of Nanoparticles on Stiffness and Impact Strength of Composites , 2007 .

[3]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[4]  José M. Martínez-Esnaola,et al.  Fracture characterization in patterned thin films by cross-sectional nanoindentation , 2006 .

[5]  Huajian Gao,et al.  Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model , 2002 .

[6]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[7]  E. Felder,et al.  Cross-sectional nanoindentation for copper adhesion characterization in blanket and patterned interconnect structures: experiments and three-dimensional FEM modeling , 2007 .

[8]  Stewart Andrew Silling,et al.  Peridynamic Modeling of Impact Damage , 2004 .

[9]  Willem D. van Driel,et al.  Prediction of crack growth in IC passivation layers , 2004, Microelectron. Reliab..

[10]  J. Maiz,et al.  Adhesion studies in integrated circuit interconnect structures , 2007 .

[11]  Wing Kam Liu,et al.  Dynamic shear band propagation and micro-structure of adiabatic shear band , 2001 .

[12]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[13]  E. Madenci,et al.  Peridynamic theory for progressive damage prediction in center-cracked composite laminates , 2009 .

[14]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[15]  A. Evans,et al.  The thermomechanical integrity of thin films and multilayers , 1995 .

[16]  José M. Martínez-Esnaola,et al.  Cross-sectional nanoindentation: a new technique for thin film interfacial adhesion characterization , 1999 .

[17]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[18]  T. L. Warren,et al.  A non-ordinary state-based peridynamic method to model solid material deformation and fracture , 2009 .

[19]  J. Martínez-Esnaola,et al.  Characterization of interconnect interfacial adhesion by cross-sectional nanoindentation , 2003 .

[20]  B. Kilic,et al.  Peridynamic Theory for Thermomechanical Analysis , 2010, IEEE Transactions on Advanced Packaging.

[21]  G. Q. Zhang,et al.  Numerical analysis of delamination and cracking phenomena in multi-layered flexible electronics , 2009, Microelectron. Reliab..

[22]  Ted Belytschko,et al.  Element-free Galerkin methods for dynamic fracture in concrete , 2000 .

[23]  E. Madenci,et al.  Prediction of crack paths in a quenched glass plate by using peridynamic theory , 2009 .

[24]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .