Biosynthesis and Biomimetic Synthesis of Flavonoid Diels-Alder Natural Products

This chapter describes the biosynthesis and biomimetic synthesis of naturally occurring flavonoid Diels‐Alder adducts found either from the family Moraceae or Zingiberaceae. The main topics addressed are biosynthetic studies by employing Morus alba L. cell cultures through feeding experiments of various exogenous substrates and putative precursors, as well as a various biomimetic approach for the chemical syntheses of flavonoid Diels‐Alder natural products.

[1]  L.,et al.  Plant Cell, Tissue and Organ Culture (PCTOC) , 2017 .

[2]  G. Fabrizi,et al.  Total Synthesis of (±)-Kuwanol E. , 2016, Journal of natural products.

[3]  N. Rahman,et al.  A Strategy toward the Biomimetic Synthesis of (±)-Morusalbanol A Pentamethyl Ether , 2016, Synthesis.

[4]  J. Porco,et al.  Asymmetric Syntheses of the Flavonoid Diels-Alder Natural Products Sanggenons C and O. , 2016, Journal of the American Chemical Society.

[5]  N. Rahman,et al.  Model studies on construction of the oxabicyclic [3.3.1] core of the mulberry Diels–Alder adducts morusalbanol A and 441772-64-1 , 2015 .

[6]  Xiaoguang Lei,et al.  Recent Advances in the Total Synthesis of Prenylflavonoid and Related Diels–Alder Natural Products , 2015, Synthesis.

[7]  Xiaoguang Lei,et al.  Enantioselective biomimetic total syntheses of kuwanons I and J and brosimones A and B. , 2014, Angewandte Chemie.

[8]  Jie Kang,et al.  The latest review on the polyphenols and their bioactivities of Chinese Morus plants , 2014, Journal of Asian natural products research.

[9]  Katharine J. Cahill,et al.  Biomimetic dehydrogenative Diels-Alder cycloadditions: total syntheses of brosimones A and B. , 2013, Angewandte Chemie.

[10]  G. Otting,et al.  Synthesis of (±)-Panduratin A and Related Natural Products Using the High Pressure Diels–Alder Reaction , 2013 .

[11]  Christian A. Gunawan,et al.  Synthetic studies towards the mulberry Diels-Alder adducts: H-bond accelerated cycloadditions of chalcones. , 2012, Organic & biomolecular chemistry.

[12]  R. Yusof,et al.  Proteomic analysis of cell suspension cultures of Boesenbergia rotunda induced by phenylalanine: identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways , 2012, Plant Cell, Tissue and Organ Culture (PCTOC).

[13]  Thị Ngọc Lam Trần,et al.  Chalcone-derived Diels–Alder adducts as NF-κB inhibitors from Morus alba , 2012, Journal of Asian natural products research.

[14]  J. Porco,et al.  Total synthesis of (±)-sorocenol B employing nanoparticle catalysis. , 2012, Organic letters.

[15]  N. Rahman,et al.  Synthesis of ( )-kuwanon V and ( )-dorsterone methyl ethers via Diels Alder reaction , 2011 .

[16]  S. Elliott,et al.  Silver nanoparticle-catalyzed Diels-Alder cycloadditions of 2'-hydroxychalcones. , 2010, Journal of the American Chemical Society.

[17]  Qin Zhu,et al.  Tyrosinase inhibitory constituents from the roots of Morus nigra: a structure-activity relationship study. , 2010, Journal of agricultural and food chemistry.

[18]  Christian A. Gunawan,et al.  Mulberry Diels-Alder adducts: synthesis of chalcomoracin and mulberrofuran C methyl ethers. , 2010, Organic letters.

[19]  J. Odriozola,et al.  (1R)-(+)-camphor and acetone derived alpha'-hydroxy enones in asymmetric Diels-Alder reaction: catalytic activation by Lewis and Brønsted acids, substrate scope, applications in syntheses, and mechanistic studies. , 2010, The Journal of organic chemistry.

[20]  N. Rahman,et al.  An efficient synthesis of (+/-)-panduratin A and (+/-)-isopanduratin A, inhibitors of dengue-2 viral activity , 2010 .

[21]  T. Fukai,et al.  Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree , 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[22]  Y. R. Lee,et al.  First Concise Total Syntheses of Biologically Interesting Nicolaioidesin C (V), Crinatusin C1 (IX) and Crinatusin C2 (X) , 2008 .

[23]  J. Porco,et al.  Electron transfer-initiated Diels-Alder cycloadditions of 2'-hydroxychalcones. , 2008, Journal of the American Chemical Society.

[24]  De-Quan Yu,et al.  Three New Cytotoxic Diels—Alder-Type Adducts from Morus australis. , 2007 .

[25]  De-Quan Yu,et al.  Three New Cytotoxic Diels–Alder‐Type Adducts from Morus australis , 2007, Chemistry & biodiversity.

[26]  T. Fukai,et al.  Antimicrobial activity of 2-arylbenzofurans from Morus species against methicillin-resistant Staphylococcus aureus. , 2005, Fitoterapia.

[27]  T. Nomura,et al.  Dynamic participation of primary metabolites in the biosynthesis of chalcomoracin andβ-sitosterol inMorus alba cell cultures , 1992, Naturwissenschaften.

[28]  De-Quan Yu,et al.  New Diels-Alder type adducts from Morus macroura and their anti-oxidant activities. , 2004, Chemical & pharmaceutical bulletin.

[29]  T. Nomura,et al.  Chemistry and Biosynthesis of Natural Diels-Alder Type Adducts from Moraceous Plants , 1995 .

[30]  T. Nomura,et al.  Isoprenoid-substituted phenolic compounds of moraceous plants. , 1994, Natural product reports.

[31]  T. Nomura,et al.  A novel way of determining the structure of artonin I, an optically active Diels–Alder type adduct, with the aid of an enzyme system of Morus alba cell cultures , 1992 .

[32]  T. Nomura,et al.  Biosynthesis of optically active Diels–Alder type adducts revealed by an aberrant metabolism of O-methylated precursors in Morus alba cell cultures , 1990 .

[33]  T. Nomura,et al.  BIOSYNTHESIS OF CHALCOMORACIN AND KUWANON J, THE DIELS-ALDER TYPE ADDUCTS, IN MORUS ALBA L. CELL CULTURES , 1989 .

[34]  A. Udagawa,et al.  NAD(P)H-dependent 6'-deoxychalcone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. , 1988, Archives of biochemistry and biophysics.

[35]  Y. Iitaka,et al.  Absolute Configuration of Natural Diels-Alder Type Adducts from the Morus Root Bark , 1988 .

[36]  T. Nomura Phenolic compounds of the mulberry tree and related plants. , 1988, Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles.

[37]  T. Fukai,et al.  Constituents of Morus alba L. Cell Cultures. (1). : Structures of Four New Natural Diels-Alder Type Adducts, Kuwanons J, Q, R, and V , 1986 .

[38]  T. Nomura,et al.  Four new natural Diels―Alder type adducts, mulberrofuran E, kuwanon Q, R, and V from callus culture of Morus alba L. , 1984 .

[39]  R. Shastri,et al.  Structures of albanols a and b, two novel phenols from Morus alba bark , 1983 .

[40]  T. Fukai,et al.  Kuwanon J, a new Diels-Alder adduct and chalcomoracin from callus culture of Morus alba L. , 1982 .

[41]  T. Masamune,et al.  Chalcomoracin, a natural Diels-Alder adduct from diseased mulberry. , 1980 .

[42]  T. Masamune,et al.  MORACIN C AND D, NEW PHYTOALEXINS FROM DISEASED MULBERRY , 1978 .

[43]  P. Eaton,et al.  ACCELERATION OF THE DIELS-ALDER REACTION BY ALUMINUM CHLORIDE , 1960 .