Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets

We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets, which are characterized by their dominant type of energy: internal, kinetic, or magnetic. Each model is threaded by a helical magnetic field with a pitch angle of 45° and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear, presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle, due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of 26° are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.

[1]  E. Ros,et al.  VLBA polarimetric monitoring of 3C 111 , 2017, 1711.01593.

[2]  D. Gabuzda,et al.  Parsec scale Faraday-rotation structure across the jets of nine active galactic nuclei , 2017, 1709.09062.

[3]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program , 2017, 1711.03983.

[4]  Sang-Sung Lee,et al.  Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron II. Observations of 3C 273 at minimum activity , 2017, 1707.01386.

[5]  L. Rezzolla,et al.  Jet-torus connection in radio galaxies: Relativistic hydrodynamics and synthetic emission , 2017, 1705.01300.

[6]  R. Lico,et al.  Interpreting the time variable RM observed in the core region of the TeV blazar Mrk 421 , 2017, 1704.06133.

[7]  G. Balarac,et al.  The effect of subgrid-scale models on grid-scale/subgrid-scale energy transfers in large-eddy simulation of incompressible magnetohydrodynamic turbulence , 2016 .

[8]  M. Perucho,et al.  THE INTERNAL STRUCTURE OF OVERPRESSURED, MAGNETIZED, RELATIVISTIC JETS , 2016, 1609.00593.

[9]  E. Ros,et al.  A highly magnetized twin-jet base pinpoints a supermassive black hole , 2016, 1605.07100.

[10]  E. Ros,et al.  Spectral evolution of flaring blazars from numerical simulations , 2016, 1601.03181.

[11]  M. Pohl,et al.  EVOLUTION OF GLOBAL RELATIVISTIC JETS: COLLIMATIONS AND EXPANSION WITH kKHI AND THE WEIBEL INSTABILITY , 2015, 1511.03581.

[12]  J. Martí The structure of steady, relativistic, magnetized jets with rotation , 2015, 1506.06519.

[13]  L. Rezzolla,et al.  RECOLLIMATION SHOCKS IN MAGNETIZED RELATIVISTIC JETS , 2015, 1505.00933.

[14]  S. Komissarov,et al.  Stationary relativistic jets , 2015, Computational astrophysics and cosmology.

[15]  D. Gabuzda,et al.  Transverse Faraday-Rotation Gradients Across the Jets of 15 Active Galactic Nuclei , 2015, 1503.03411.

[16]  L. Sironi,et al.  Relativistic Jets Shine through Shocks or Magnetic Reconnection , 2015, 1502.01021.

[17]  José-María Martí,et al.  On the correction of conserved variables for numerical RMHD with staggered constrained transport , 2015, Comput. Phys. Commun..

[18]  A. Tchekhovskoy,et al.  Dynamically important magnetic fields near accreting supermassive black holes , 2014, Nature.

[19]  A. Marscher TURBULENT, EXTREME MULTI-ZONE MODEL FOR SIMULATING FLUX AND POLARIZATION VARIABILITY IN BLAZARS , 2013, 1311.7665.

[20]  Oliver Porth,et al.  Three Dimensional Structure of Relativistic Jet Formation , 2012, 1212.0676.

[21]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS , 2012, 1205.6746.

[22]  P. Alexander,et al.  Interaction of Fanaroff–Riley class II radio jets with a randomly magnetized intracluster medium , 2011, 1108.0430.

[23]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[24]  O. Porth,et al.  SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS , 2011, 1105.4258.

[25]  P. Hardee,et al.  THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY WITH A SUB-ALFVÉNIC JET: TEMPORAL PROPERTIES , 2011, 1104.0549.

[26]  A. Marscher,et al.  ON THE SOURCE OF FARADAY ROTATION IN THE JET OF THE RADIO GALAXY 3C 120 , 2011, 1102.1943.

[27]  P. Kharb,et al.  Signatures of large-scale magnetic fields in AGN jets: transverse asymmetries , 2011, 1101.5149.

[28]  A. Broderick,et al.  PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS , 2010, 1006.5015.

[29]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[30]  M. Aloy,et al.  SPECTRAL EVOLUTION OF SUPERLUMINAL COMPONENTS IN PARSEC-SCALE JETS , 2008, 0811.1143.

[31]  A. Marscher,et al.  Faraday Rotation and Polarization Gradients in the Jet of 3C 120: Interaction with the External Medium and a Helical Magnetic Field? , 2008, 0805.4797.

[32]  S. Komissarov,et al.  Magnetic acceleration of relativistic AGN jets , 2007, astro-ph/0703146.

[33]  A. Mignone,et al.  An HLLC Riemann solver for relativistic flows – II. Magnetohydrodynamics , 2006, astro-ph/0601640.

[34]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[35]  Y. Lyubarsky On the relativistic magnetic reconnection , 2005 .

[36]  M. Lyutikov,et al.  Polarization and structure of relativistic parsec-scale AGN jets , 2004, astro-ph/0406144.

[37]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[38]  J. Wardle,et al.  Theoretical Models for Producing Circularly Polarized Radiation in Extragalactic Radio Sources , 2003, astro-ph/0305136.

[39]  M. Aloy,et al.  Three-dimensional Simulations of Relativistic Precessing Jets Probing the Structure of Superluminal Sources , 2003, astro-ph/0302123.

[40]  M. Aloy,et al.  Jet Stability and the Generation of Superluminal and Stationary Components , 2001, astro-ph/0101188.

[41]  Jorstad,et al.  Flashing superluminal components in the jet of the radio galaxy 3C120 , 2000, Science.

[42]  Y. A. Gallant,et al.  Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method , 2000, astro-ph/0005222.

[43]  Martí,et al.  Radio Emission from Three-dimensional Relativistic Hydrodynamic Jets: Observational Evidence of Jet Stratification , 1999, The Astrophysical journal.

[44]  S. A. E. G. Falle,et al.  The large-scale structure of FR-II radio sources , 1998 .

[45]  S. Falle,et al.  Simulations of Superluminal Radio Sources , 1997 .

[46]  J. Sakai,et al.  Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected along a Magnetic Field , 1997 .

[47]  A. Marscher,et al.  Hydrodynamical Models of Superluminal Sources , 1997 .

[48]  Antonio Marquina,et al.  Morphology and Dynamics of Relativistic Jets , 1997 .

[49]  S. Koide A Two-dimensional Simulation of a Relativistic Jet Bent by an Oblique Magnetic Field , 1997 .

[50]  A. Mioduszewski,et al.  Simulated VLBI Images from Relativistic Hydrodynamic Jet Models , 1996, astro-ph/9606004.

[51]  R. Mutel,et al.  A Two-dimensional Simulation of a Relativistic Magnetized Jet , 1996 .

[52]  A. Marscher,et al.  Parsec-Scale Synchrotron Emission from Hydrodynamic Relativistic Jets in Active Galactic Nuclei , 1995 .

[53]  P. Hughes,et al.  Simulations of Relativistic Extragalactic Jets , 1994, astro-ph/9406041.

[54]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[55]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[56]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[57]  B. Burn On the Depolarization of Discrete Radio Sources by Faraday Dispersion , 1965 .

[58]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[59]  G. Bodo,et al.  An HLLC Solver for Relativistic Flows – II . , 2006 .

[60]  J. Sakai,et al.  Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected into an Oblique Magnetic Field , 1998 .

[61]  J. Roberts,et al.  Radio Astrophysics : Nonthermal Processes in Galactic and Extragalactic Sources , 1970 .