JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm

[1]  A. Son,et al.  Management of acute aortic syndromes from initial presentation to definitive treatment. , 2021, The American journal of emergency medicine.

[2]  J. O'connell,et al.  Identification of novel genetic susceptibility loci for thoracic and abdominal aortic aneurysms via genome-wide association study using the UK Biobank Cohort , 2021, PloS one.

[3]  Yun Zhang,et al.  Erythropoietin promotes abdominal aortic aneurysms in mice through angiogenesis and inflammatory infiltration , 2021, Science Translational Medicine.

[4]  P. Natarajan,et al.  Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. , 2021, Journal of molecular and cellular cardiology.

[5]  Fabio Villada,et al.  Rupture of splenic artery aneurysm in a man with polycythemia vera and acquired von Willebrand syndrome , 2021, BMJ Case Reports.

[6]  Y. Takeishi,et al.  Crucial role of hematopoietic JAK2 V617F in the development of aortic aneurysms , 2021, Haematologica.

[7]  A. Saliba,et al.  Integrated scRNA-seq analysis identifies conserved transcriptomic features of mononuclear phagocytes in mouse and human atherosclerosis , 2020, bioRxiv.

[8]  F. Pinet,et al.  TREM-1 orchestrates Angiotensin II-induced monocyte trafficking and promotes experimental abdominal aortic aneurysm. , 2020, The Journal of clinical investigation.

[9]  A. Saliba,et al.  Dynamics of Cardiac Neutrophil Diversity in Murine Myocardial Infarction , 2020, Circulation research.

[10]  M. Cybulsky,et al.  Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas , 2020, Circulation research.

[11]  Gabriel L. McKinsey,et al.  A new genetic strategy for targeting microglia in development and disease , 2020, eLife.

[12]  Masanori Yoshino,et al.  Extracranial carotid artery aneurysm with myeloproliferative neoplastic cell invasion , 2020, Journal of vascular surgery cases and innovative techniques.

[13]  C. James,et al.  Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm , 2020, The Journal of clinical investigation.

[14]  W. Vainchenker,et al.  Description of a Knock-In Mouse Model of JAK2V617F MPN Emerging from a Minority of Mutated Hematopoietic Stem Cells. , 2019, Blood.

[15]  K. Ravid,et al.  JAK2V617F-Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine Heart Failure , 2019, JACC. Basic to translational science.

[16]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[17]  Yvan Saeys,et al.  A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment , 2019, Nature Neuroscience.

[18]  C. James,et al.  Comparison of endothelial promoter efficiency and specificity in mice reveals a subset of Pdgfb‐positive hematopoietic cells , 2019, Journal of thrombosis and haemostasis : JTH.

[19]  Bertrand Z. Yeung,et al.  Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics , 2018, Genome Biology.

[20]  Jun Kit Wang,et al.  Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. , 2018, Immunity.

[21]  A. Tall,et al.  Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in Jak2V617F Mice , 2018, Circulation research.

[22]  Jun Kit Wang,et al.  Hyaluronan Receptor LYVE‐1‐Expressing Macrophages Maintain Arterial Tone through Hyaluronan‐Mediated Regulation of Smooth Muscle Cell Collagen , 2018, Immunity.

[23]  Dennis Wolf,et al.  Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis , 2018, Circulation research.

[24]  Q. Wen,et al.  Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms , 2017, The Journal of clinical investigation.

[25]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[26]  J. Raffort,et al.  Monocytes and macrophages in abdominal aortic aneurysm , 2017, Nature Reviews Cardiology.

[27]  W. Vainchenker,et al.  Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. , 2017, Blood.

[28]  Carla M. T. Bauer,et al.  Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth , 2015, Nature Immunology.

[29]  Alan Daugherty,et al.  Abdominal aortic aneurysm: novel mechanisms and therapies , 2015, Current opinion in cardiology.

[30]  A. Tedgui,et al.  Angiotensin II Mobilizes Spleen Monocytes to Promote the Development of Abdominal Aortic Aneurysm in Apoe−/− Mice , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[31]  C. Abram,et al.  Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. , 2014, Journal of immunological methods.

[32]  E. Solary,et al.  JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. , 2013, Blood.

[33]  P. Zhang,et al.  GM-CSF contributes to aortic aneurysms resulting from SMAD3 deficiency. , 2013, The Journal of clinical investigation.

[34]  Baohui Xu,et al.  Peptide Inhibitor of CXCL4–CCL5 Heterodimer Formation, MKEY, Inhibits Experimental Aortic Aneurysm Initiation and Progression , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[35]  S. Rivella,et al.  Macrophages support pathological erythropoiesis in Polycythemia Vera and Beta-Thalassemia , 2013, Nature Medicine.

[36]  Robert J. Hinchliffe,et al.  Pathophysiology and epidemiology of abdominal aortic aneurysms , 2011, Nature Reviews Cardiology.

[37]  E. Oberlin,et al.  Definitive human and mouse hematopoiesis originates from the embryonic endothelium: a new class of HSCs based on VE-cadherin expression. , 2010, The International journal of developmental biology.

[38]  P. Quax,et al.  Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently. , 2010, Atherosclerosis.

[39]  A. Barberis,et al.  Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis , 2010, Nature.

[40]  A. Daugherty,et al.  Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE−/− mice , 2010, Clinical science.

[41]  M. Shibuya,et al.  M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis , 2009, The Journal of experimental medicine.

[42]  F. Schnütgen,et al.  Adopting the good reFLEXes when generating conditional alterations in the mouse genome , 2007, Transgenic Research.

[43]  R. Tiedt,et al.  Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. , 2007, Blood.

[44]  R. Hoffman,et al.  Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. , 2006, Blood.

[45]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[46]  A. Daugherty,et al.  Aortic Dissection Precedes Formation of Aneurysms and Atherosclerosis in Angiotensin II-Infused, Apolipoprotein E-Deficient Mice , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[47]  M. Gassmann,et al.  Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. Nahrendorf,et al.  Development and Function of Arterial and Cardiac Macrophages. , 2016, Trends in immunology.

[49]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..