An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear growth and application to the mean-field FitzHugh-Nagumo model

In this paper, we introduce fully implementable, adaptive Euler-Maruyama schemes for McKean-Vlasov SDEs assuming only a standard monotonicity condition on the drift and diffusion coefficients but no global Lipschitz continuity for either. We prove moment stability of the discretised processes and a strong convergence rate of $1/2$. We present several numerical examples centred around a mean-field model for FitzHugh-Nagumo neurons, which illustrate that the standard uniform scheme fails and that the adaptive approach shows in most cases superior performance compared to tamed approximation schemes. In addition, we introduce and analyse an adaptive Milstein scheme for a certain sub-class of McKean-Vlasov SDEs with linear measure-dependence of the drift.

[1]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[2]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .

[3]  C'onall Kelly,et al.  Adaptive Euler methods for stochastic systems with non-globally Lipschitz coefficients , 2018, Numer. Algorithms.

[4]  Olivier Faugeras,et al.  Clarification and Complement to “Mean-Field Description and Propagation of Chaos in Networks of Hodgkin–Huxley and FitzHugh–Nagumo Neurons” , 2014, Journal of mathematical neuroscience.

[5]  P. Cattiaux,et al.  Probabilistic approach for granular media equations in the non-uniformly convex case , 2006, math/0603541.

[6]  Raúl Tempone,et al.  Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation , 2016, Statistics and Computing.

[7]  Mireille Bossy,et al.  A stochastic particle method for the McKean-Vlasov and the Burgers equation , 1997, Math. Comput..

[8]  Christoph Reisinger,et al.  Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process , 2015, 1601.00919.

[9]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[10]  Neelima,et al.  On Explicit Milstein-type Scheme for Mckean-Vlasov Stochastic Differential Equations with Super-linear Drift Coefficient , 2020, Electronic Journal of Probability.

[11]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[12]  William Salkeld,et al.  Freidlin–Wentzell LDP in path space for McKean–Vlasov equations and the functional iterated logarithm law , 2017, The Annals of Applied Probability.

[13]  Xuerong Mao,et al.  The truncated Euler-Maruyama method for stochastic differential equations , 2015, J. Comput. Appl. Math..

[14]  Heping Ma,et al.  Order-preserving strong schemes for SDEs with locally Lipschitz coefficients , 2014, 1402.3708.

[15]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Zhongqiang Zhang,et al.  A Fundamental Mean-Square Convergence Theorem for SDEs with Locally Lipschitz Coefficients and Its Applications , 2012, SIAM J. Numer. Anal..

[17]  Michael B. Giles,et al.  Non-nested Adaptive Timesteps in Multilevel Monte Carlo Computations , 2014, MCQMC.

[18]  A. Veretennikov,et al.  On Ergodic Measures for McKean-Vlasov Stochastic Equations , 2006 .

[19]  Christoph Reisinger,et al.  First order convergence of Milstein schemes for McKean equations and interacting particle systems , 2020, ArXiv.

[20]  K. Spiliopoulos,et al.  Default clustering in large portfolios: Typical events. , 2011, 1104.1773.

[21]  Michael B. Giles,et al.  Multilevel Monte Carlo method for ergodic SDEs without contractivity , 2018, Journal of Mathematical Analysis and Applications.

[22]  P. Kloeden,et al.  Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.

[23]  F. Malrieu Convergence to equilibrium for granular media equations and their Euler schemes , 2003 .

[24]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[25]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[26]  Christoph Reisinger,et al.  Convergence of an Euler Scheme for a Hybrid Stochastic-Local Volatility Model with Stochastic Rates in Foreign Exchange Markets , 2015, SIAM J. Financial Math..

[27]  J. Touboul,et al.  Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons , 2012, The Journal of Mathematical Neuroscience.

[28]  Alain Durmus,et al.  An elementary approach to uniform in time propagation of chaos , 2018, Proceedings of the American Mathematical Society.

[29]  L. Szpruch,et al.  Weak quantitative propagation of chaos via differential calculus on the space of measures , 2019, The Annals of Applied Probability.

[30]  François Delarue,et al.  Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games , 2018 .

[31]  K. Ramanan,et al.  From the master equation to mean field game limit theory: a central limit theorem , 2018, Electronic Journal of Probability.

[32]  F. Delarue,et al.  Particle systems with a singular mean-field self-excitation. Application to neuronal networks , 2014, 1406.1151.

[33]  Christoph Reisinger,et al.  Simulation of particle systems interacting through hitting times , 2018, 1805.11678.

[34]  Xiaojie Wang,et al.  The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients , 2011, 1102.0662.

[35]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[36]  Lukasz Szpruch,et al.  Antithetic multilevel particle system sampling method for McKean-Vlasov SDEs , 2019, 1903.07063.

[37]  A. Eberle,et al.  Quantitative Harris-type theorems for diffusions and McKean–Vlasov processes , 2016, Transactions of the American Mathematical Society.

[38]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[39]  D. Dijk,et al.  A comparison of biased simulation schemes for stochastic volatility models , 2008 .

[40]  Dung Nguyen Tien A stochastic Ginzburg–Landau equation with impulsive effects , 2013 .

[41]  A. Sznitman Topics in propagation of chaos , 1991 .

[42]  Martin Bauer,et al.  Strong Solutions of Mean-Field Stochastic Differential Equations with irregular drift , 2018, 1806.11451.

[43]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[44]  Michael Ludkovski,et al.  Mean Field Game Approach to Production and Exploration of Exhaustible Commodities , 2017, 1710.05131.

[45]  S. Sabanis A note on tamed Euler approximations , 2013, 1303.5504.

[46]  B. Hambly,et al.  A McKean–Vlasov equation with positive feedback and blow-ups , 2018, The Annals of Applied Probability.

[47]  H. McKean,et al.  A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Michael Scheutzow,et al.  Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions , 2018, The Annals of Applied Probability.

[49]  Florent Malrieu,et al.  Logarithmic Sobolev Inequalities for Some Nonlinear Pde's , 2001 .

[50]  Christoph Reisinger,et al.  Milstein schemes for delay McKean equations and interacting particle systems , 2020, ArXiv.

[51]  G. dos Reis,et al.  Simulation of McKean–Vlasov SDEs with super-linear growth , 2018, IMA Journal of Numerical Analysis.

[52]  Christoph Reisinger,et al.  Strong order 1/2 convergence of full truncation Euler approximations to the Cox–Ingersoll–Ross process , 2017, IMA Journal of Numerical Analysis.

[53]  Mireille Bossy,et al.  New particle representations for ergodic McKean-Vlasov SDEs , 2019, ESAIM: Proceedings and Surveys.

[54]  Michael B. Giles,et al.  Adaptive Euler–Maruyama method for SDEs with nonglobally Lipschitz drift , 2020 .

[55]  M. Hp A class of markov processes associated with nonlinear parabolic equations. , 1966 .

[56]  Denis Belomestny,et al.  Projected Particle Methods for Solving McKean-Vlasov Stochastic Differential Equations , 2017, SIAM J. Numer. Anal..

[57]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[58]  A. Veretennikov,et al.  Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations , 2016 .

[59]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[60]  L. Szpruch,et al.  McKean–Vlasov SDEs under measure dependent Lyapunov conditions , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[61]  P. Glynn,et al.  Probability Theory and Stochastic Modelling , 2016 .

[62]  Michael B. Giles,et al.  Adaptive Euler-Maruyama Method for SDEs with Non-globally Lipschitz Drift: Part I, Finite Time Interval , 2016, 1703.06743.