Observability of Turing Machines: A Refinement of the Theory of Computation

The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the object of the study) by different mathematical languages (the instruments of investigation). Together with traditional mathematical languages using such concepts as ‘enumerable sets’ and ‘continuum’ a new computational methodology allowing one to measure the number of elements of different infinite sets is used in this paper. It is shown how mathematical languages used to describe the machines limit our possibilities to observe them. In particular, notions of observable deterministic and non-deterministic Turing machines are introduced and conditions ensuring that the latter can be simulated by the former are established. The authors thank the anonymous reviewers for their useful suggestions. This research was partially supported by the Russian Federal Program “Scientists and Educators in Russia of Innovations”, contract number 02.740.11.5018.

[1]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[2]  Roy T. Cook,et al.  The Foundations of Mathematics in the Theory of Sets , 2003 .

[3]  N. M. Nagorny,et al.  The Theory of Algorithms , 1988 .

[4]  Yaroslav D. Sergeyev,et al.  Numerical computations and mathematical modelling with infinite and infinitesimal numbers , 2012, ArXiv.

[5]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[6]  B. Meek Rethinking Linguistic Relativity , 1998 .

[7]  Kenneth E. Iverson,et al.  Notation as a tool of thought , 1980, APLQ.

[8]  Antanas Zilinskas,et al.  Interval Arithmetic Based Optimization in Nonlinear Regression , 2010, Informatica.

[9]  C. J. Keyser Contributions to the Founding of the Theory of Transfinite Numbers , 1916 .

[10]  J. Davenport Editor , 1960 .

[11]  S. Levinson,et al.  Rethinking Linguistic Relativity , 1991, Current Anthropology.

[12]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[13]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[16]  S. Dehaene,et al.  Exact and Approximate Arithmetic in an Amazonian Indigene Group , 2004, Science.

[17]  Yaroslav D. Sergeyev,et al.  A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities , 2008, Informatica.

[18]  M. W. Shields An Introduction to Automata Theory , 1988 .

[19]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[20]  W. Luxemburg Non-Standard Analysis , 1977 .

[21]  T. H. Hildebrandt,et al.  Contributions to the Founding of the Theory of Transfinite Numbers. , 1916 .

[22]  K. Stern Selected Writings of Edward Sapir in Language, Culture, and Personality , 1951 .

[23]  Bolyai János Matematikai Társulat,et al.  Theory of algorithms , 1985 .

[24]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[25]  Yaroslav D. Sergeyev,et al.  Counting systems and the First Hilbert problem , 2010, 1203.4141.

[26]  B. L. Whorf Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf , 1956 .

[27]  Hanif D. Sherali,et al.  The Concept of an Algorithm , 2005 .

[28]  Yaroslav D. Sergeyev,et al.  Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge ☆ , 2009, 1203.3150.

[29]  J. Lucy,et al.  Grammatical categories and cognition: References , 1992 .

[30]  Yaroslav D. Sergeyev,et al.  Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains , 2009, 1203.4140.

[31]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[32]  Emil L. Post Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.

[33]  G. William Walster Compiler Support of Interval Arithmetic with Inline Code Generation and Nonstop Exception Handling , 1998 .

[34]  V. A. Uspenski,et al.  On the Definition of an Algorithm , 1963 .

[35]  P. Gordon Numerical Cognition Without Words: Evidence from Amazonia , 2004, Science.

[36]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .