From Context to Distance: Learning Dissimilarity for Categorical Data Clustering

Clustering data described by categorical attributes is a challenging task in data mining applications. Unlike numerical attributes, it is difficult to define a distance between pairs of values of a categorical attribute, since the values are not ordered. In this article, we propose a framework to learn a context-based distance for categorical attributes. The key intuition of this work is that the distance between two values of a categorical attribute Ai can be determined by the way in which the values of the other attributes Aj are distributed in the dataset objects: if they are similarly distributed in the groups of objects in correspondence of the distinct values of Ai a low value of distance is obtained. We propose also a solution to the critical point of the choice of the attributes Aj. We validate our approach by embedding our distance learning framework in a hierarchical clustering algorithm. We applied it on various real world and synthetic datasets, both low and high-dimensional. Experimental results show that our method is competitive with respect to the state of the art of categorical data clustering approaches. We also show that our approach is scalable and has a low impact on the overall computational time of a clustering task.

[1]  Ruggero G. Pensa,et al.  Context-Based Distance Learning for Categorical Data Clustering , 2009, IDA.

[2]  Ian Witten,et al.  Data Mining , 2000 .

[3]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[4]  Lipika Dey,et al.  A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set , 2007, Pattern Recognit. Lett..

[5]  Huan Liu,et al.  Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution , 2003, ICML.

[6]  Ian H. Witten,et al.  Data Mining: Practical Machine Learning Tools and Techniques, 3/E , 2014 .

[7]  Pushpa N. Rathie,et al.  On the entropy of continuous probability distributions (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[8]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[9]  Yi Li,et al.  COOLCAT: an entropy-based algorithm for categorical clustering , 2002, CIKM '02.

[10]  Vipin Kumar,et al.  Introduction to Data Mining, (First Edition) , 2005 .

[11]  Renée J. Miller,et al.  LIMBO: Scalable Clustering of Categorical Data , 2004, EDBT.

[12]  Joshua Zhexue Huang,et al.  Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values , 1998, Data Mining and Knowledge Discovery.

[13]  Tao Li,et al.  Entropy-based criterion in categorical clustering , 2004, ICML.

[14]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[15]  Sudipto Guha,et al.  ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[16]  David W. Aha,et al.  A Probabilistic Framework for Memory-Based Reasoning , 1998, Artif. Intell..

[17]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[18]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[19]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[20]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[21]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[22]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[23]  Sudipto Guha,et al.  ROCK: A Robust Clustering Algorithm for Categorical Attributes , 2000, Inf. Syst..

[24]  Jinyuan You,et al.  CLOPE: a fast and effective clustering algorithm for transactional data , 2002, KDD.

[25]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[26]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[27]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[28]  Xindong Wu,et al.  Error Detection and Impact-Sensitive Instance Ranking in Noisy Datasets , 2004, AAAI.

[29]  Vipin Kumar,et al.  Similarity Measures for Categorical Data: A Comparative Evaluation , 2008, SDM.

[30]  Johannes Gehrke,et al.  CACTUS—clustering categorical data using summaries , 1999, KDD '99.

[31]  Mohammed J. Zaki,et al.  CLICKS: Mining Subspace Clusters in Categorical Data via K-Partite Maximal Cliques , 2005, 21st International Conference on Data Engineering (ICDE'05).

[32]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .