Qubit-qudit states with positive partial transpose

We show that the length of a qubit-qutrit separable state is equal to the max(r,s), where r is the rank of the state and s is the rank of its partial transpose. We refer to the ordered pair (r,s) as the birank of this state. We also construct examples of qubit-qutrit separable states of any feasible birank (r,s). We determine the closure of the set of normalized two-qutrit entangled states of rank four having positive partial transpose (PPT). The boundary of this set consists of all separable states of length at most four. We prove that the length of any qubit-qudit separable state of birank (d+1,d+1) is d+1. We also show that all qubit-qudit PPT entangled states of birank (d+1,d+1) can be built in a simple way from edge states. If V is a subspace of dimension k<d in the tensor product of C^2 and C^d such that V contains no product vectors, we show that the set of all product vectors in the orthogonal complement of V is a vector bundle of rank d-k over the projective line. Finally, we explicitly construct examples of qubit-qudit PPT states (both separable and entangled) of any feasible birank.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  T. Willmore Algebraic Geometry , 1973, Nature.

[3]  E. Størmer DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .

[4]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[5]  E. Størmer DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .

[6]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[7]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[8]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[9]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[10]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[11]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[13]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[14]  G. Vidal,et al.  LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY , 1998 .

[15]  J. Cirac,et al.  Separability in 2N composite quantum systems , 1999, quant-ph/9912010.

[16]  Ashish V. Thapliyal,et al.  Optimal decompositions of barely separable states , 1999, quant-ph/9904005.

[17]  G. Vidal,et al.  Operational criterion and constructive checks for the separability of low-rank density matrices , 2000, quant-ph/0002089.

[18]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[19]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[20]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[21]  Ashish V. Thapliyal,et al.  Evidence for bound entangled states with negative partial transpose , 1999, quant-ph/9910026.

[22]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[23]  M. Lewenstein,et al.  Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.

[24]  Barbara M. Terhal,et al.  Rank two bipartite bound entangled states do not exist , 2003, Theor. Comput. Sci..

[25]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[26]  K. Parthasarathy On the maximal dimension of a completely entangled subspace for finite level quantum systems , 2004, quant-ph/0405077.

[27]  Kil-Chan Ha,et al.  Construction of entangled states with positive partial transposes based on indecomposable positive linear maps , 2003, quant-ph/0310109.

[28]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[29]  D. Chruściński,et al.  Witnessing quantum discord in 2 x N systems , 2010, 1004.0434.

[30]  Carl A. Miller,et al.  Matrix pencils and entanglement classification , 2009, 0911.1803.

[31]  M. Lewenstein,et al.  Searching for extremal PPT entangled states , 2009, 0907.4979.

[32]  Runyao Duan,et al.  Tensor rank and stochastic entanglement catalysis for multipartite pure states. , 2010, Physical review letters.

[33]  Lukasz Skowronek Three-by-three bound entanglement with general unextendible product bases , 2011, 1105.2709.

[34]  M. Lewenstein,et al.  A note on the optimality of decomposable entanglement witnesses and completely entangled subspaces , 2010, 1012.3786.

[35]  Lin Chen,et al.  Description of rank four entangled states of two qutrits having positive partial transpose , 2011 .

[36]  S. Friedland,et al.  An explicit expression for the relative entropy of entanglement in all dimensions , 2010, 1007.4544.

[37]  Lin Chen,et al.  Distillability and PPT entanglement of low-rank quantum states , 2011, 1101.5134.

[38]  Lin Chen,et al.  Equivalence classes and canonical forms for two-qutrit entangled states of rank four having positive partial transpose , 2012, 1205.2902.

[39]  M. Lewenstein,et al.  Four-qubit entangled symmetric states with positive partial transpositions , 2012, 1203.3711.

[40]  Seung-Hyeok Kye,et al.  FACIAL STRUCTURES FOR SEPARABLE STATES , 2012 .

[41]  Lin Chen,et al.  Properties and Construction of Extreme Bipartite States Having Positive Partial Transpose , 2012, 1203.1364.

[42]  Preeti Parashar,et al.  Entanglement is not a lower bound for geometric discord , 2012 .

[43]  Some semialgebraic sets of states and separability conjectures , 2012 .

[44]  Four-qubit PPT entangled symmetric states , 2012 .