Huygens' Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators.

Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.

[1]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[2]  Marta Castro-López,et al.  Multipolar interference for directed light emission. , 2014, Nano letters.

[3]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[4]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[5]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[6]  Jingbo Sun,et al.  High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. , 2015, Nano letters.

[7]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[8]  Chennupati Jagadish,et al.  Nonlinear Generation of Vector Beams From AlGaAs Nanoantennas. , 2016, Nano letters.

[9]  Jeremy B. Wright,et al.  Optical magnetic mirrors without metals , 2014, 1403.1308.

[10]  Igal Brener,et al.  Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. , 2014, Nano letters.

[11]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[12]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[13]  M. Sinclair,et al.  III–V Semiconductor Nanoresonators—A New Strategy for Passive, Active, and Nonlinear All‐Dielectric Metamaterials , 2016, 1605.00298.

[14]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[15]  C. Lee Giles,et al.  Electromagnetic scattering by magnetic spheres , 1983 .

[16]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[17]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[18]  Sheng Liu,et al.  Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces , 2017, Nature Communications.

[19]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[20]  Michael B. Sinclair,et al.  Perturbation Theory in the Design of Degenerate Rectangular Dielectric Resonators , 2012 .

[21]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[22]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[23]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[24]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[25]  I. Brener,et al.  Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles , 2015 .

[26]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[27]  Yuri S. Kivshar,et al.  Hybrid nanoantennas for directional emission enhancement , 2014 .

[28]  Igal Brener,et al.  Observation of Fano resonances in all-dielectric nanoparticle oligomers. , 2013, Small.

[29]  F. Lederer,et al.  A generalized Kerker condition for highly directive nanoantennas. , 2015, Optics letters.

[30]  F Moreno,et al.  Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere , 2012, Nature Communications.

[31]  Lei Wang,et al.  Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms , 2016, 1602.00755.

[32]  Michael B. Sinclair,et al.  Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces. , 2015, Optics express.

[33]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[34]  M. Sinclair,et al.  Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces. , 2016, Nano letters.

[35]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[36]  Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces , 2016, 1607.06469.

[37]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[38]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[39]  B. Lukyanchuk,et al.  Optimum Forward Light Scattering by Spherical and Spheroidal Dielectric Nanoparticles with High Refractive Index , 2014, 1412.2861.

[40]  Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process , 2013 .

[41]  K. Geib,et al.  Fabrication and performance of selectively oxidized vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.

[42]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[43]  Isabelle Staude,et al.  Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics , 2016 .

[44]  Boris N. Chichkov,et al.  Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation , 2011 .

[45]  Boris N. Chichkov,et al.  Optical response features of Si-nanoparticle arrays , 2010 .

[46]  L. I. Basilio,et al.  Perturbation Theory in the Design of Degenerate Spherical Dielectric Resonators , 2013, IEEE Transactions on Antennas and Propagation.