300-GHz-Band 120-Gb/s Wireless Front-End Based on InP-HEMT PAs and Mixers

We developed a 300-GHz-band 120-Gb/s wireless transceiver front-ends (TRX) using our in-house InP-based high-electron-mobility-transistor (InP-HEMT) technology for beyond-5G. The TRX is composed of the RF power amplifiers (PAs), mixers, and local oscillation (LO) PAs which are all packaged in individual waveguide (WG) modules by using a ridge coupler for low-loss WG-to-IC transition. RF PAs are designed using the low-impedance inter-stage-matching technique to reduce the inter-stage matching loss of the amplifier stages, and the back-side DC line (BDCL) technique is used to simplify the layout and to improve the gain of the PAs. The fabricated RF PAs show a high output 1-dB compression point of more than 6 dBm from 278 to 302 GHz. The mixers are used for both up- and down-conversion in the transmitter and receiver. These mixers are designed to have high conversion gain (CG) over the wideband even after packaging by enhancing the isolation between the RF and IF ports. The measured CG of mixer module is −15 dB, and the 3-dB IF-bandwidth is 32 GHz. The LO PAs are also designed using the BDCL technique so that they can supply the required LO power to the mixers. The TRX with these InP building blocks enables the data transmission of a 120 Gb/s 16QAM signal over a link distance of 9.8 m.

[1]  A. Tessmann,et al.  300 GHz broadband power amplifier with 508 GHz gain-bandwidth product and 8 dBm output power , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[2]  Markku J. Juntti,et al.  Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G , 2018, IEEE Communications Magazine.

[3]  H. Nosaka,et al.  300-GHz 120-Gb/s Wireless Transceiver with High-Output-Power and High-Gain Power Amplifier Based on 80-nm InP-HEMT Technology , 2019, 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS).

[4]  Akifumi Kasamatsu,et al.  Demonstration of 20-Gbps wireless data transmission at 300 GHz for KIOSK instant data downloading applications with InP MMICs , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[5]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[6]  N. Sarmah,et al.  A wideband fully integrated SiGe chipset for high data rate communication at 240 GHz , 2016, 2016 11th European Microwave Integrated Circuits Conference (EuMIC).

[7]  B. Heinemann,et al.  Towards 100 Gbps: A Fully Electronic 90 Gbps One Meter Wireless Link at 230 GHz , 2018, 2018 48th European Microwave Conference (EuMC).

[8]  Toshio Morioka,et al.  60 Gbit/s 400 GHz wireless transmission , 2015, 2015 International Conference on Photonics in Switching (PS).

[9]  K. Okada,et al.  Millimeter-wave InP Device Technologies for Ultra-high Speed Wireless Communications toward Beyond 5G , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[10]  S. Wagner,et al.  A 300 GHz low-noise amplifier S-MMIC for use in next-generation imaging and communication applications , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[11]  O. Ambacher,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[12]  Hideyuki Nosaka,et al.  250 – 300 GHz waveguide module with ridge-coupler and InP-HEMTIC , 2014, 2014 Asia-Pacific Microwave Conference.

[13]  Emilien Peytavit,et al.  Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection , 2014, IEEE Transactions on Terahertz Science and Technology.

[14]  S. Maas A GaAs MESFET Mixer with Very Low Intermodulation , 1987 .

[15]  Bernd Heinemann,et al.  A 65 Gbps QPSK one meter wireless link operating at a 225–255 GHz tunable carrier in a SiGe HBT technology , 2018, 2018 IEEE Radio and Wireless Symposium (RWS).

[16]  Klaus David,et al.  6G Vision and Requirements: Is There Any Need for Beyond 5G? , 2018, IEEE Vehicular Technology Magazine.

[17]  Anh-Vu Pham,et al.  A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[18]  B. Heinemann,et al.  A 16-QAM 100-Gb/s 1-M Wireless Link With an EVM of 17% at 230 GHz in an SiGe Technology , 2019, IEEE Microwave and Wireless Components Letters.

[19]  Richard Lai,et al.  Miniature packaging concept for LNAs in the 200–300 GHz range , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[20]  Hideaki Matsuzaki,et al.  High-electron-mobility In0.53Ga0.47As/In0.8Ga0.2As composite-channel modulation-doped structures grown by metal-organic vapor-phase epitaxy , 2010, 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM).

[21]  Hideaki Matsuzaki,et al.  300-GHz Band 20-Gbps ASK Transmitter Module Based on InP-HEMT MMICs , 2015, 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[22]  Kenichi Okada,et al.  300-GHz. 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[23]  Arnulf Leuther,et al.  Towards MMIC-Based 300GHz Indoor Wireless Communication Systems , 2015, IEICE Trans. Electron..

[24]  D. Meier,et al.  Ultra-broadband MMIC-based wireless link at 240 GHz enabled by 64GS/s DAC , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[25]  T. Ishibashi,et al.  Unitraveling-Carrier Photodiodes for Terahertz Applications , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  K. Sano,et al.  Feasibility Study of Wafer-Level Backside Process for InP-Based ICs , 2019, IEEE Transactions on Electron Devices.

[27]  Payam Heydari,et al.  A 115–135-GHz 8PSK Receiver Using Multi-Phase RF-Correlation-Based Direct-Demodulation Method , 2019, IEEE Journal of Solid-State Circuits.

[28]  Jun Terada,et al.  Terahertz wireless communications based on photonics technologies. , 2013, Optics express.

[29]  Fawwaz T. Ulaby,et al.  Absorption in the 220 GHz atmospheric window , 1973 .

[30]  G. Ducournau,et al.  32 Gbit/s QPSK transmission at 385 GHz using coherent fibre-optic technologies and THz double heterodyne detection , 2015 .

[31]  Zach Griffith,et al.  A 6–10 mW Power Amplifier at 290–307.5 GHz in 250 nm InP HBT , 2015, IEEE Microwave and Wireless Components Letters.

[32]  Hiroshi Hamada,et al.  Prototype of KIOSK Data Downloading System at 300 GHz: Design, Technical Feasibility, and Results , 2018, IEEE Communications Magazine.

[33]  Cam Nguyen,et al.  A V-Band Power Amplifier With Integrated Wilkinson Power Dividers-Combiners and Transformers in 0.18- $\mu$ m SiGe BiCMOS , 2019, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  K. Komoni,et al.  Fundamental performance limits and scaling of a CMOS passive double-balanced mixer , 2008, 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference.

[35]  Kenichi Okada,et al.  A 120Gb/s 16QAM CMOS millimeter-wave wireless transceiver , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[36]  Axel Tessmann,et al.  64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency , 2015 .

[37]  Dietmar Kissinger,et al.  Wideband 240-GHz Transmitter and Receiver in BiCMOS Technology With 25-Gbit/s Data Rate , 2018, IEEE Journal of Solid-State Circuits.

[38]  A. Leuther,et al.  A balanced resistive 210 GHz mixer with 50 GHz IF bandwidth , 2010, The 5th European Microwave Integrated Circuits Conference.

[39]  T. Schneider,et al.  All Active MMIC-Based Wireless Communication at 220 GHz , 2011, IEEE Transactions on Terahertz Science and Technology.

[40]  Payam Heydari,et al.  A CMOS Two-Element 170-GHz Fundamental-Frequency Transmitter With Direct RF-8PSK Modulation , 2020, IEEE Journal of Solid-State Circuits.

[41]  Kosuke Katayama,et al.  A 32Gbit/s 16QAM CMOS receiver in 300GHz band , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[42]  Payam Heydari,et al.  Analysis and Design of High-Order QAM Direct-Modulation Transmitter for High-Speed Point-to-Point mm-Wave Wireless Links , 2019, IEEE Journal of Solid-State Circuits.