Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs

The rates of catalytic oxidation of cyclohexane and CO are 4 and 20 times higher, respectively, with Cu supported on a cerium-based metal–organic framework (MOF) than on the structurally analogous ...

[1]  Qiang Xu,et al.  From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications , 2020 .

[2]  S. Wuttke Introduction to Reticular Chemistry. Metal–Organic Frameworks and Covalent Organic Frameworks By Omar M. Yaghi, Markus J. Kalmutzki, and Christian S. Diercks. , 2019, Angewandte Chemie International Edition.

[3]  O. Yaghi,et al.  Introduction to Reticular Chemistry , 2019 .

[4]  Cheng Wang,et al.  Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol , 2019, Nature Catalysis.

[5]  Jianhong Liu,et al.  Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. , 2019, Journal of the American Chemical Society.

[6]  Shanfu Lu,et al.  A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells , 2019, Journal of Materials Chemistry A.

[7]  P. Serna,et al.  Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. , 2019, Journal of the American Chemical Society.

[8]  B. L. Mehdi,et al.  Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal-Organic Framework. , 2019, Journal of the American Chemical Society.

[9]  M. Wasielewski,et al.  Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal-Organic Frameworks for Alcohol Oxidation. , 2019, Journal of the American Chemical Society.

[10]  R. Behm,et al.  Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal-Organic Framework. , 2019, Journal of the American Chemical Society.

[11]  M. Otyepka,et al.  Mixed‐Valence Single‐Atom Catalyst Derived from Functionalized Graphene , 2019, Advanced materials.

[12]  Bruce C. Gates,et al.  Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research , 2019, ACS Catalysis.

[13]  Christopher A. Trickett,et al.  Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol. , 2018, Journal of the American Chemical Society.

[14]  Connie C. Lu,et al.  Well-Defined Rhodium-Gallium Catalytic Sites in a Metal-Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes. , 2018, Journal of the American Chemical Society.

[15]  J. Hupp,et al.  Beyond the Active Site: Tuning the Activity and Selectivity of a Metal-Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. , 2018, Journal of the American Chemical Society.

[16]  Wenbin Lin,et al.  Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis. , 2018, Accounts of chemical research.

[17]  J. Llorca,et al.  Outstanding Methane Oxidation Performance of Palladium-Embedded Ceria Catalysts Prepared by a One-Step Dry Ball-Milling Method. , 2018, Angewandte Chemie.

[18]  John R. Morris,et al.  Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO , 2018, The Journal of Physical Chemistry C.

[19]  M. V. Ganduglia-Pirovano,et al.  Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. , 2018, Journal of the American Chemical Society.

[20]  Rachel B. Getman,et al.  Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework. , 2018, Angewandte Chemie.

[21]  Wenbin Lin,et al.  Titanium(III)-Oxo Clusters in a Metal-Organic Framework Support Single-Site Co(II)-Hydride Catalysts for Arene Hydrogenation. , 2018, Journal of the American Chemical Society.

[22]  J. Hupp,et al.  Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. , 2017, Journal of the American Chemical Society.

[23]  B. L. Mehdi,et al.  Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[24]  Zhen Ma,et al.  Reversible Redox Activity in Multicomponent Metal-Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. , 2017, Journal of the American Chemical Society.

[25]  C. Cramer,et al.  Molecular Rhodium Complexes Supported on the Metal-Oxide-Like Nodes of Metal Organic Frameworks and on Zeolite HY: Catalysts for Ethylene Hydrogenation and Dimerization. , 2017, ACS applied materials & interfaces.

[26]  Cheng Wang,et al.  Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2. , 2017, Journal of the American Chemical Society.

[27]  Ashlee J Howarth,et al.  Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. , 2017, Accounts of chemical research.

[28]  N. Stock,et al.  Synthesis and Characterization of New Ce(IV)-MOFs Exhibiting Various Framework Topologies , 2017 .

[29]  Chun-Hua Yan,et al.  Crystal Plane Effect of Ceria on Supported Copper Oxide Cluster Catalyst for CO Oxidation: Importance of Metal–Support Interaction , 2017 .

[30]  M. A. Ortuño,et al.  Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature , 2016, ACS central science.

[31]  G. Somorjai,et al.  Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. , 2016, Nano letters.

[32]  Wenbin Lin,et al.  Cerium-Hydride Secondary Building Units in a Porous Metal-Organic Framework for Catalytic Hydroboration and Hydrophosphination. , 2016, Journal of the American Chemical Society.

[33]  Ping Liu,et al.  Low-Temperature Conversion of Methane to Methanol on CeOx/Cu2O Catalysts: Water Controlled Activation of the C-H Bond. , 2016, Journal of the American Chemical Society.

[34]  Michelle H. Wiebenga,et al.  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping , 2016, Science.

[35]  Ferdi Schüth,et al.  In Situ EPR Study of the Redox Properties of CuO–CeO2 Catalysts for Preferential CO Oxidation (PROX) , 2016 .

[36]  Matteo Monai,et al.  Fundamentals and Catalytic Applications of CeO2-Based Materials. , 2016, Chemical reviews.

[37]  Hong-Cai Zhou,et al.  Zr-based metal-organic frameworks: design, synthesis, structure, and applications. , 2016, Chemical Society reviews.

[38]  J. Hupp,et al.  Tuning Zr6 Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts , 2016 .

[39]  S. Mobin,et al.  Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyl)tetrazolate Metal-Organic Frameworks , 2015, Molecules.

[40]  Michael J. Katz,et al.  Destruction of chemical warfare agents using metal-organic frameworks. , 2015, Nature materials.

[41]  Joseph S. Elias,et al.  Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles. , 2014, Journal of the American Chemical Society.

[42]  Kyungsu Na,et al.  Superacidity in sulfated metal-organic framework-808. , 2014, Journal of the American Chemical Society.

[43]  Craig M. Brown,et al.  Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. , 2014, Nature chemistry.

[44]  Omar M Yaghi,et al.  Water adsorption in porous metal-organic frameworks and related materials. , 2014, Journal of the American Chemical Society.

[45]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[46]  J. Paier,et al.  Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. , 2013, Chemical reviews.

[47]  Gengshen Hu,et al.  CO oxidation over CuO/Ce1−xCuxO2−δ and Ce1−xCuxO2−δ catalysts: Synergetic effects and kinetic study , 2012 .

[48]  A. Vimont,et al.  Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al) , 2012 .

[49]  Seung Min Kim,et al.  Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. , 2012, Journal of the American Chemical Society.

[50]  Robert Schlögl,et al.  CO oxidation as a prototypical reaction for heterogeneous processes. , 2011, Angewandte Chemie.

[51]  F. Taulelle,et al.  Monitoring the Activation Process of the Giant Pore MIL-100(Al) by Solid State NMR , 2011 .

[52]  Thorsten Staudt,et al.  Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. , 2011, Nature materials.

[53]  Seung Min Kim,et al.  Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. , 2010, Journal of the American Chemical Society.

[54]  C. Campbell,et al.  Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding , 2010, Science.

[55]  Ferdi Schüth,et al.  Support effect in high activity gold catalysts for CO oxidation. , 2006, Journal of the American Chemical Society.

[56]  김대진,et al.  Metal-Organic Framework의 수소 흡착 메커니즘의 이해 , 2005 .

[57]  Ling Zhou,et al.  Electron Localization Determines Defect Formation on Ceria Substrates , 2005, Science.

[58]  T. Maschmeyer,et al.  Increasing the ketone selectivity of the cobalt-catalyzed radical chain oxidation of cyclohexane. , 2002, Chemistry.

[59]  W. B. Fisher,et al.  Cyclohexanol and Cyclohexanone , 2000 .

[60]  P. Holland,et al.  Three-Coordinate Cu(II) Complexes: Structural Models of Trigonal-Planar Type 1 Copper Protein Active Sites , 1999 .

[61]  Yongxiang Zhao,et al.  Comparative study of CO adsorption on zirconia polymorphs with DRIFT and transmission FT-IR spectroscopy , 2018 .

[62]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .