PAS kinase: integrating nutrient sensing with nutrient partitioning.

[1]  J. Rutter,et al.  PAS Kinase Promotes Cell Survival and Growth Through Activation of Rho1 , 2012, Science Signaling.

[2]  K. Inoki,et al.  AMPK and mTOR in cellular energy homeostasis and drug targets. , 2012, Annual review of pharmacology and toxicology.

[3]  R. McCartney,et al.  Subunit and Domain Requirements for Adenylate-mediated Protection of Snf1 Kinase Activation Loop from Dephosphorylation* , 2011, The Journal of Biological Chemistry.

[4]  G. Rutter,et al.  Human Mutation within Per-Arnt-Sim (PAS) Domain-containing Protein Kinase (PASK) Causes Basal Insulin Hypersecretion , 2011, The Journal of Biological Chemistry.

[5]  J. Carew,et al.  Mechanisms of mTOR inhibitor resistance in cancer therapy , 2011, Targeted Oncology.

[6]  D. Hardie AMPK and autophagy get connected , 2011, The EMBO journal.

[7]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.

[8]  R. Scharfmann,et al.  Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion , 2010, Diabetologia.

[9]  J. M. Sauder,et al.  Structural Bases of PAS Domain-regulated Kinase (PASK) Activation in the Absence of Activation Loop Phosphorylation* , 2010, The Journal of Biological Chemistry.

[10]  D. Hardie,et al.  Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. , 2010, Biochimica et biophysica acta.

[11]  Eric L. Weiss,et al.  Cbk1 Regulation of the RNA-Binding Protein Ssd1 Integrates Cell Fate with Translational Control , 2009, Current Biology.

[12]  Andreas Möglich,et al.  Structure and signaling mechanism of Per-ARNT-Sim domains. , 2009, Structure.

[13]  J. Rutter,et al.  Involvement of Per-Arnt-Sim Kinase and Extracellular-Regulated Kinases-1/2 in Palmitate Inhibition of Insulin Gene Expression in Pancreatic β-Cells , 2009, Diabetes.

[14]  R. Shaw,et al.  LKB1 and AMP‐activated protein kinase control of mTOR signalling and growth , 2009, Acta physiologica.

[15]  M. Denison,et al.  Role of the Per/Arnt/Sim Domains in Ligand-dependent Transformation of the Aryl Hydrocarbon Receptor* , 2008, Journal of Biological Chemistry.

[16]  Eric L. Weiss,et al.  The NDR/LATS Family Kinase Cbk1 Directly Controls Transcriptional Asymmetry , 2008, PLoS biology.

[17]  T. Uchida,et al.  Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. , 2008, Biochemistry.

[18]  D. Hardie,et al.  AMPK and Raptor: matching cell growth to energy supply. , 2008, Molecular cell.

[19]  S. Horvath,et al.  Antitumor Activity of Rapamycin in a Phase I Trial for Patients with Recurrent PTEN-Deficient Glioblastoma , 2008, PLoS medicine.

[20]  J. Rutter,et al.  Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling , 2007, The EMBO journal.

[21]  D. Hardie,et al.  AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy , 2007, Nature Reviews Molecular Cell Biology.

[22]  J. Rutter,et al.  PAS kinase is required for normal cellular energy balance , 2007, Proceedings of the National Academy of Sciences.

[23]  J. Rutter,et al.  Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. , 2007, Molecular cell.

[24]  R. Loewith,et al.  Tor2 Directly Phosphorylates the AGC Kinase Ypk2 To Regulate Actin Polarization , 2005, Molecular and Cellular Biology.

[25]  D. Hardie,et al.  AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. , 2005, Cell metabolism.

[26]  M. Hall,et al.  TOR Regulates Ribosomal Protein Gene Expression via PKA and the Forkhead Transcription Factor FHL1 , 2004, Cell.

[27]  R. Loewith,et al.  Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive , 2004, Nature Cell Biology.

[28]  G. Rutter,et al.  Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Entian,et al.  Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes , 1987, Molecular and General Genetics MGG.

[30]  Michael N. Hall,et al.  Elucidating TOR Signaling and Rapamycin Action: Lessons from Saccharomyces cerevisiae , 2002, Microbiology and Molecular Biology Reviews.

[31]  S. McKnight,et al.  Coordinate Regulation of Sugar Flux and Translation by PAS Kinase , 2002, Cell.

[32]  Jared Rutter,et al.  Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation. , 2002, Structure.

[33]  J. Crespo,et al.  Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. , 2002, Molecular cell.

[34]  D. Sabatini,et al.  mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery , 2002, Cell.

[35]  J. Hoch,et al.  PAS-A domain of phosphorelay sensor kinase A: A catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  K. Gardner,et al.  PAS kinase: An evolutionarily conserved PAS domain-regulated serine/threonine kinase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Michael N. Hall,et al.  The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors , 1999, Nature.

[38]  J. François,et al.  Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae , 1999, Yeast.

[39]  D. Hardie,et al.  Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress. , 1999, Biochemical Society symposium.

[40]  Y. Ohya,et al.  The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton , 1998, Current Biology.

[41]  C. Berset,et al.  The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  C. Berset,et al.  A novel inhibitor of cap‐dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E , 1997, The EMBO journal.

[43]  Marc Bickle,et al.  The Yeast Phosphatidylinositol Kinase Homolog TOR2 Activates RHO1 and RHO2 via the Exchange Factor ROM2 , 1997, Cell.

[44]  M. Hall,et al.  TOR2 is required for organization of the actin cytoskeleton in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Hardie,et al.  Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio , 1996, Current Biology.

[46]  L. Johnson,et al.  Active and Inactive Protein Kinases: Structural Basis for Regulation , 1996, Cell.

[47]  T Watanabe,et al.  Identification of Yeast Rho1p GTPase as a Regulatory Subunit of 1,3-β-Glucan Synthase , 1996, Science.

[48]  A. Gingras,et al.  Rapamycin blocks the phosphorylation of 4E‐BP1 and inhibits cap‐dependent initiation of translation. , 1996, The EMBO journal.

[49]  J. François,et al.  Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. , 1995, European journal of biochemistry.

[50]  J. Hershey,et al.  Characterization of Yeast Translation Initiation Factor 1A and Cloning of Its Essential Gene (*) , 1995, The Journal of Biological Chemistry.

[51]  G. Ditta,et al.  The Oxygen Sensor Protein, FixL, of Rhizobium meliloti , 1995, The Journal of Biological Chemistry.

[52]  J. Kunz,et al.  TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. , 1994, Molecular biology of the cell.

[53]  J. Kunz,et al.  Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression , 1993, Cell.

[54]  R. O. Poyton,et al.  Release of two Saccharomyces cerevisiae cytochrome genes, COX6 and CYC1, from glucose repression requires the SNF1 and SSN6 gene products , 1990, Molecular and cellular biology.

[55]  D. Montgomery,et al.  Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components , 1984, Molecular and cellular biology.