Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation

We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.

C. D. Moore | MicroBooNE collaboration C. Adams | M. Auger | S. Balasubramanian | B. Baller | A. Bhat | R. Castillo Fernandez | D. Cianci | E. Cohen | M. Del Tutto | L. Escudero Sanchez | A. A. Fadeeva | A. P. Furmanski | V. Genty | D. Goeldi | S. Gollapinni | E. Gramellini | R. Guenette | P. Guzowski | A. Hackenburg | P. Hamilton | A. Hourlier | E.-C. Huang | C. James | Y.-J. Jwa | G. Karagiorgi | W. Ketchum | B. Kirby | T. Kobilarcik | A. Lister | B. R. Littlejohn | S. Lockwitz | W. C. Louis | M. Luethi | A. Marchionni | S. Marcocci | D. A. Martinez Caicedo | V. Meddage | A. Mogan | R. Murrells | O. Palamara | D. Porzio | G. Pulliam | J. L. Raaf | A. Rafique | L. Rochester | C. Rudolf von Rohr | B. Russell | A. Schukraft | J. Sinclair | E. L. Snider | S. R. Soleti | P. Spentzouris | K. Sutton | A. M. Szelc | N. Tagg | M. Toups | S. Tufanli | W. Van De Pontseele | B. Viren | D. A. Wickremasinghe | K. Wierman | S. Wolbers | G. P. Zeller | M. Mooney | V. Radeka | R. An | J. Anthony | D. Caratelli | L. Cooper-Troendle | J. I. Crespo-Anadon | D. Devitt | S. Dytman | B. Eberly | B. T. Fleming | D. Garcia-Gamez | O. Hen | J. Jan de Vries | I. Kreslo | J. Marshall | A. Mastbaum | J. Mousseau | M. Murphy | A. Papadopoulou | M. Ross-Lonergan | D. W. Schmitz | S. Sword-Fehlberg | K. Terao | G. Yarbrough | L. E. Yates | J. Zennamo | M. Soderberg | M. H. Shaevitz | G. T. Garvey | R. G. Van de Water | D. Lorca | G. A. Horton-Smith | B. Lundberg | G. H. Collin | L. Camilleri | D. Naples | S. Soldner-Rembold | X. Qian | J. St. John | Y. Li | M. Weber | R. A. Johnson | J. M. Conrad | V. Papavassiliou | H. Wei | V. Pandey | J. Hewes | J. Esquivel | F. Cavanna | E. Church | Z. Pavlovic | L. Bagby | Y.-T. Tsai | H. Greenlee | C. Hill | A. Ereditato | M. Thomson | J. Asaadi | J. I. Crespo-Anadón | J. J. Evans | W. Foreman | C. Mariani | J. Spitz | M. Convery | V. Radeka | G. Collin | J. Conrad | M. Murphy | A. Ereditato | M. Thomson | T. Miceli | G. Cerati | T. Bolton | M. Mooney | S. Gollapinni | J. Asaadi | L. Bagby | H. Greenlee | J. Joshi | W. Ketchum | M. Kirby | S. Lockwitz | Y. Tsai | J. Zennamo | S. Wolbers | T. Yang | T. Usher | P. Spentzouris | M. Bishai | B. Viren | M. Tutto | E. Church | R. Guenette | V. Papavassiliou | A. Marchionni | G. Mills | G. Barr | G. Zeller | M. Weber | H. Wei | O. Palamara | V. Paolone | B. Yu | R. Johnson | P. Nienaber | D. Naples | W. Seligman | L. Camilleri | G. Horton-Smith | M. Shaevitz | J. Spitz | K. Terao | M. Toups | S. Balasubramanian | C. Zhang | W. Louis | N. Tagg | F. Bay | S. Dytman | P. Guzowski | B. Kirby | I. Kreslo | J. Nowak | J. Raaf | T. Strauss | T. Wongjirad | Y. Chen | B. Littlejohn | X. Qian | B. Baller | M. Bass | F. Cavanna | B. Fleming | G. Garvey | J. Hewes | C. James | H. Jostlein | G. Karagiorgi | C. Mariani | J. Marshall | C. Moore | Ž. Pavlović | L. Rochester | D. Schmitz | M. Soderberg | A. Szelc | S. Soldner-Rembold | C. Thorn | A. Blake | J. Evans | S. Tufanli | A. Furmanski | D. Goeldi | P. Hamilton | B. Lundberg | A. Schukraft | R. An | E. Gramellini | C. Barnes | A. Hourlier | E. Huang | D. M. Caicedo | M. Luethi | B. Eberly | J. Mousseau | A. Papadopoulou | D. Caratelli | H. Chen | L. E. Sanchez | D. Garcia-Gamez | A. Hackenburg | L. Jiang | Y. Jwa | A. Lister | D. Lorca | X. Luo | A. Mastbaum | J. Moon | A. Rafique | B. Russell | J. Sinclair | A. Smith | Z. Williams | M. Auger | J. Anthony | A. Bhat | D. Cianci | E. Cohen | L. Cooper-Troendle | D. Devitt | O. Hen | T. Kobilarcik | Y. Li, | S. Marcocci | V. Meddage | A. Mogan | S. Pate | E. Piasetzky | D. Porzio | M. Ross-Lonergan | E. Snider | S. Soleti | J. S. John | K. Sutton | S. Sword-Fehlberg | G. Yarbrough | L. Yates | C. V. Rohr | R. Grosso | R. C. Fernández | J. Esquivel | A. Fadeeva | W. Foreman | V. Genty | C. Hill | J. Ho | J. J. Vries | D. Kaleko | R. Murrells | G. Pulliam | W. V. D. Pontseele | R. G. Water | K. Woodruff | M. C. Adams | A. Diaz | V. Pandey | J. Ho | M. Kirby | T. Strauss | C. Thorn | B. Yu | G. Barr | M. Bishai | A. Blake | T. Yang | S. F. Pate | C. Zhang | K. Wierman | R. Grosso | G. B. Mills | T. Miceli | C. Barnes | M. Bass | F. Bay | T. Bolton | H. Chen | M. Convery | L. Jiang | J. Joshi | H. Jostlein | D. Kaleko | X. Luo | J. Moon | P. Nienaber | J. Nowak | V. Paolone | E. Piasetzky | W. Seligman | T. Usher | T. Wongjirad | K. Woodruff | K. Bhattacharya | W. Tang | G. Cerati | Z. Williams | Z. Pavlovic | K. Bhattacharya | Y. Chen | A. Diaz | A. Smith | W. Tang | Rui An | J. J. D. Vries | J. Conrad | C. R. V. Rohr | J. John | Y. Li | J. Evans | C. Zhang | S. Pate | D. A. Caicedo

[1]  B. Jones,et al.  The photomultiplier tube calibration system of the MicroBooNE experiment , 2015, 1502.04159.

[2]  M. Mooney The MicroBooNE Experiment and the Impact of Space Charge Effects , 2015, 1511.01563.

[3]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[4]  C. Bromberg,et al.  A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC , 2013, 1306.1712.

[5]  W. Tang,et al.  Data Unfolding with Wiener-SVD Method , 2017, 1705.03568.

[6]  Rayleigh The Problem of the Random Walk , 1905, Nature.

[7]  Veljko Radeka,et al.  Liquid-argon ionization chambers as total-absorption detectors , 1974 .

[8]  Chao Zhang,et al.  Three-dimensional imaging for large LArTPCs , 2018, Journal of Instrumentation.

[9]  J. Joshi,et al.  Measurement of Longitudinal Electron Diffusion in Liquid Argon , 2015, 1508.07059.

[10]  Simon R. Arridge,et al.  Solving Boundary Integral Problems with BEM++ , 2015, ACM Trans. Math. Softw..

[11]  S. Ramo Currents Induced by Electron Motion , 1939, Proceedings of the IRE.

[12]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[13]  A. Rappoldi,et al.  A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam , 2015, 1503.01520.

[14]  D. A. Wickremasinghe,et al.  Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber , 2016, 1611.05531.

[15]  J. Warman,et al.  Hot-electron thermalization in solid and liquid argon, krypton, and xenon , 1982 .

[16]  C. D. Moore,et al.  Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering , 2017, 1703.06187.

[17]  J. Harvey,et al.  DESIGN OF GRID IONIZATION CHAMBERS , 1949 .

[18]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.

[19]  B. Baller,et al.  Liquid argon TPC signal formation, signal processing and reconstruction techniques , 2017, 1703.04024.

[20]  Philip D. Plowright Extrapolation , 2019, Making Architecture Through Being Human.

[21]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[22]  C. D. Moore,et al.  The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector , 2017, The European Physical Journal C.

[23]  D. A. Wickremasinghe,et al.  Design and Construction of the MicroBooNE Detector , 2016, 1612.05824.

[24]  S. Kubota,et al.  Estimation of Fano factors in liquid argon, krypton, xenon and xenon-doped liquid argon , 1976 .

[25]  Bo Yu,et al.  Cold electronics for "Giant" Liquid Argon Time Projection Chambers , 2011 .

[26]  C. D. Moore,et al.  Neutrino flux prediction at MiniBooNE , 2008, 0806.1449.

[27]  A. Pullia,et al.  Time-domain Simulation of electronic noises , 2004, IEEE Transactions on Nuclear Science.

[28]  D. A. Wickremasinghe,et al.  Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter , 2017, 1707.09903.

[29]  KARL PEARSON,et al.  The Problem of the Random Walk , 1905, Nature.

[30]  D. A. Wickremasinghe,et al.  Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC , 2017, 1705.07341.

[31]  M. Wojcik,et al.  Electron recombination in ionized liquid argon: a computational approach based on realistic models of electron transport and reactions. , 2011, The journal of physical chemistry. A.

[32]  D. R. Nygren,et al.  The Time Projection Chamber: A New 4 pi Detector for Charged Particles , 1976 .

[33]  B. C. Barish,et al.  A Neutrino detector sensitive to rare processes. I. A Study of neutrino electron reactions , 1976 .

[34]  Carlos Alberto Brebbia The birth of the boundary element method from conception to application , 2017 .

[35]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE , 2018, Journal of Instrumentation.

[36]  Antonio Ereditato,et al.  First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers , 2018, Instruments.

[37]  Sue Birchmore,et al.  Garfield , 2007, Journal of General Internal Medicine.

[38]  S. Gollapinni,et al.  Construction and assembly of the wire planes for the MicroBooNE Time Projection Chamber , 2016, 1609.06169.

[39]  C. Rubbia The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors , 1977 .

[40]  R. Veenhof,et al.  Garfield, recent developments , 1998 .

[41]  R. Hatcher,et al.  The NuMI Neutrino Beam , 2015, 1507.06690.

[42]  V. Svelto,et al.  Extension of Ramo's theorem as applied to induced charge in semiconductor detectors☆ , 1971 .

[43]  L. Hamel,et al.  Generalized demonstration of Ramo's theorem with space charge and polarization effects , 2008 .