Covariance Correction Step for Kalman Filtering with an Attitude

Redundant attitude representations are often used in Kalman filters for estimating dynamic states that include an attitude. A minimal three-element attitude deviation is combined with a reference attitude, where the deviation is included in the filter state and has an associated covariance estimate. This paper derives a reset step that adjusts the covariance matrix when information is moved from the attitude deviation to the reference attitude. When combined with the extended or unscented Kalman filter prediction and measurement steps, the reset allows one to easily construct a Kalman filter for a system for which the state includes an attitude. This algorithm is closely related to (and a correction to) the multiplicative extended Kalman filter or the unscented quaternion estimator, depending on whether the reset is combined with an extended or unscented Kalman filter. In comparison to the multiplicative extended Kalman filter, it is more general and includes a reset after the measurement update, as well ...

[1]  Stephan Theil,et al.  Investigation of the Attitude Error Vector Reference Frame in the INS EKF , 2011 .

[2]  John L. Crassidis,et al.  Filtering for Attitude Estimation and Calibration , 2014 .

[3]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[4]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[5]  F. Markley,et al.  Nonlinear Attitude Filtering Methods , 2005 .

[6]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[7]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[8]  Joseph J. LaViola,et al.  On Kalman Filtering With Nonlinear Equality Constraints , 2007, IEEE Transactions on Signal Processing.

[9]  M. Psiaki Backward-Smoothing Extended Kalman Filter , 2005 .

[10]  Tor Arne Johansen,et al.  Globally exponentially stable attitude and gyro bias estimation with application to GNSS/INS integration , 2015, Autom..

[11]  Panagiotis Tsiotras,et al.  Extended Kalman Filter for spacecraft pose estimation using dual quaternions , 2015, 2015 American Control Conference (ACC).

[12]  James J. Bock,et al.  THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE (BLAST) 2006: CALIBRATION AND FLIGHT PERFORMANCE , 2009, 0904.1202.

[13]  James K. Hall,et al.  Quaternion attitude estimation for miniature air vehicles using a multiplicative extended Kalman filter , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[14]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[15]  M. Shuster A survey of attitude representation , 1993 .

[16]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[17]  J. L. Farrell,et al.  Attitude determination by kalman filtering , 1970 .

[18]  N. Trawny,et al.  Indirect Kalman Filter for 3 D Attitude Estimation , 2005 .

[19]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[20]  James Cutler,et al.  The attitude determination system of the RAX satellite , 2012 .

[21]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[22]  F. Landis Markley Lessons Learned , 2009 .

[23]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[24]  R. G. Reynolds,et al.  Asymptotically Optimal Attitude Filtering with Guaranteed Convergence , 2008 .

[25]  Daniele Mortari,et al.  Norm-Constrained Kalman Filtering , 2009 .

[26]  Philippe Martin,et al.  Non-Linear Symmetry-Preserving Observers on Lie Groups , 2007, IEEE Transactions on Automatic Control.

[27]  Taeyoung Lee,et al.  Global symplectic uncertainty propagation on SO(3) , 2008, 2008 47th IEEE Conference on Decision and Control.

[28]  Axel Barrau,et al.  Intrinsic Filtering on Lie Groups With Applications to Attitude Estimation , 2013, IEEE Transactions on Automatic Control.