Kinetic model for the combustion of tyre wastes

Abstract The decomposition of tyre wastes at different heating rates in an oxidizing atmosphere is explained by means of a kinetic model including a first step of pyrolysis, which assumes three organic fractions not forming residues, and a step of combustion. The atmosphere used varied from 10 of oxygen to 20% (v/v). The activation energy for the step of combustion is in the range 221–235 kJ/mol, and there exists a dependence of the rate of decomposition on the partial pressure of oxygen.

[1]  J. Šesták,et al.  Distortion of the Arrhenius parameters by the inappropriate kinetic model function , 1991 .

[2]  S. Vossoughi,et al.  Kinetics of liquid hydrocarbon combustion using the DSC technique , 1990 .

[3]  R. Agrawal Analysis of irreversible complex chemical reactions and some observations on their overall activation energy , 1988 .

[4]  Jürgen Troitzsch,et al.  International Plastics Flammability Handbook , 1983 .

[5]  J. Lahaye,et al.  Fundamental issues in control of carbon gasification reactivity , 1991 .

[6]  S. Vyazovkin,et al.  The influence of errors of Arrhenius parameter calculation on the exactness of the solution of the direct kinetic problem , 1991 .

[7]  A. Marcilla,et al.  Kinetic study of the thermogravimetric behavior of different rubbers , 1996 .

[8]  J. A. Conesa,et al.  New kinetic model for thermal decomposition of heterogeneous materials , 1995 .

[9]  S. Vyazovkin,et al.  Error in determining activation energy caused by the wrong choice of process model , 1990 .

[10]  C. Roy,et al.  Compensation effect in the thermal decomposition of cellulosic materials , 1980 .

[11]  David L. Urban,et al.  Study of the kinetics of sewage sludge pyrolysis using DSC and TGA , 1982 .

[12]  Michael Jerry Antal,et al.  Kinetics of the Thermal Decomposition of Cellulose, Hemicellulose, and Sugar Cane Bagasse , 1989 .

[13]  Thomas B. Brill,et al.  Flash pyrolysis of hydroxyl-terminated polybutadiene (HTPB) II : Implications of the kinetics to combustion of organic polymers , 1996 .

[14]  J. A. Conesa,et al.  Analysis of different kinetic models in the dynamic pyrolysis of cellulose , 1995 .

[15]  J. A. Conesa,et al.  Gas from the pyrolysis of scrap tires in a fluidized bed reactor , 1996 .

[16]  D. Chang,et al.  Investigation of thermal decomposition of chlorinated polymers , 1996 .

[17]  R. Agrawal Compensation effect in the pyrolysis of cellulosic materials , 1985 .

[18]  E. Okandan,et al.  Kinetic analysis of DSC and thermogravimetric data on combustion of lignite , 1996 .

[19]  S. Vossoughi TGA/DSC techniques as research tools for the study of the in-situ combustion process , 1986 .

[20]  R. Font,et al.  Application of the transition state theory to the pyrolysis of biomass and tars , 1995 .

[21]  A. Marcilla,et al.  Mass spectrometry validation of a kinetic model for the thermal decomposition of tyre wastes , 1997 .