Algebraic methods and arithmetic filtering for exact predicates on circle arcs

The purpose of this paper is to present a new method to design exact geometric predicates in algorithms dealing with curved objects such as circular arcs. We focus on the comparison of the abscissae of two intersection points of circle arcs, which is known to be a difficult predicate involved in the computation of arrangements of circle arcs. We present an algorithm for deciding the $x$-order of intersections from the signs of the coefficients of a polynomial, obtained by a general approach based on resultants. This method allows the use of efficient arithmetic and filtering techniques leading to fast implementation as shown by the experimental results.

[1]  W. Burnside,et al.  Theory of equations , 1886 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  P. A. M. The History of Determinants , Nature.

[4]  W. C. Mcginnis Ideals , 1925, Free Speech.

[5]  H. Weyl The Classical Groups , 1940 .

[6]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[7]  G. Rota,et al.  The invariant theory of binary forms , 1984 .

[8]  Guido D. Salvucci,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[9]  Editors , 1986, Brain Research Bulletin.

[10]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[11]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[12]  B. Mourrain,et al.  The Hilbert series of Invariants of Sl n (k) , 1993 .

[13]  Giuseppe Liotta,et al.  Robust proximity queries: an illustration of degree-driven algorithm design , 1997, SCG '97.

[14]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[15]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[16]  B. Mourrain,et al.  Some Applications of Bezoutians in Effective Algebraic Geometry , 1998 .

[17]  Sylvain Pion,et al.  Interval Arithmetic: an efficient implementation and an application to computational geometry , 1999 .

[18]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[19]  김광욱,et al.  ANSI/IEEE Std. 754-1985에 의거한 부동소수점 연산기의 동작원리에 관한 연구 , 1999 .

[20]  Jean-Daniel Boissonnat,et al.  Efficient algorithms for line and curve segment intersection using restricted predicates , 1999, SCG '99.

[21]  S. Pion De la geometrie algorithmique au calcul geometrique , 1999 .

[22]  J. Boissonnat,et al.  Elementary Algorithms for Reporting Intersections of Curve Segments , 1999 .

[23]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[24]  Jean-Daniel Boissonnat,et al.  Robust Plane Sweep for Intersecting Segments , 2000, SIAM J. Comput..

[25]  Kurt Mehlhorn,et al.  Look — a Lazy Object-Oriented Kernel for geometric computation , 2000, SCG '00.

[26]  Bernard Mourrain,et al.  Generalized Resultants over Unirational Algebraic Varieties , 2000, J. Symb. Comput..

[27]  Jean-Daniel Boissonnat,et al.  An elementary algorithm for reporting intersections of red/blue curve segments , 2000, Comput. Geom..

[28]  François Potvin RAPPORT DE RECHERCHE , 2002 .