Understanding and Controlling the Work Function of Perovskite Oxides Using Density Functional Theory

Perovskite oxides containing transition metals are promising materials in a wide range of electronic and electrochemical applications. However, neither their work function values nor an understanding of their work function physics have been established. Here, the work function trends of a series of perovskite (ABO3 formula) materials using density functional theory are predicted, and show that the work functions of (001)‐terminated AO‐ and BO2‐oriented surfaces can be described using concepts of electronic band filling, bond hybridization, and surface dipoles. The calculated range of AO (BO2) work functions are 1.60–3.57 eV (2.99–6.87 eV). An approximately linear correlation (R2 between 0.77 and 0.86 is found, depending on surface termination) between work function and position of the oxygen 2p band center, which correlation enables both understanding and rapid prediction of work function trends. Furthermore, SrVO3 is identified as a stable, low work function, highly conductive material. Undoped (Ba‐doped) SrVO3 has an intrinsically low AO‐terminated work function of 1.86 eV (1.07 eV). These properties make SrVO3 a promising candidate material for a new electron emission cathode for application in high power microwave devices, and as a potential electron emissive material for thermionic energy conversion technologies.

[1]  D. Morgan,et al.  Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes , 2010 .

[2]  N. Binggeli,et al.  Influence of the interface atomic structure on the magnetic and electronic properties of La 2/3 Sr 1/3 MnO 3 /SrTiO 3 (001) heterojunctions , 2010 .

[3]  D. Morgan,et al.  Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO₃ (B = Cr, Mn, Fe, Co and Ni). , 2015, Physical chemistry chemical physics : PCCP.

[4]  B. Steele,et al.  Study of oxygen ion transport in acceptor doped samarium cobalt oxide , 1995 .

[5]  C. Franchini,et al.  Screened hybrid functional applied to 3d0→3d8transition-metal perovskites LaMO3(M = Sc–Cu): Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties , 2012, 1209.0486.

[6]  B. Yildiz,et al.  Chemical Heterogeneities on La0.6Sr0.4CoO3−δ Thin Films—Correlations to Cathode Surface Activity and Stability , 2012 .

[7]  Gerbrand Ceder,et al.  Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides , 2015, 1507.08768.

[8]  Weiguang Zhu,et al.  Electron emission of silicon field emitter arrays coated with N-doped SrTiO3 film , 2006 .

[9]  B. Meyer,et al.  Schottky barriers at transition-metal/ SrTiO 3 ( 001 ) interfaces , 2009 .

[10]  Philippe Ghosez,et al.  Interface Physics in Complex Oxide Heterostructures , 2011 .

[11]  Meilin Liu,et al.  Oxygen reduction on LaMnO3-Based cathode materials in solid oxide fuel cells , 2007 .

[12]  T. Ishihara,et al.  Surface composition of perovskite-type materials studied by Low Energy Ion Scattering (LEIS) , 2014 .

[13]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[14]  N. Barrett,et al.  Surface enhanced covalency and Madelung potentials in Nb doped SrTiO3 (100), (110) and (111) single crystals , 2010, 2304.03480.

[15]  Variation of Schottky barrier height induced by dopant segregation monitored by contact resistivity measurements , 2014 .

[16]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[17]  R. Howe,et al.  Photon-enhanced thermionic emission from heterostructures with low interface recombination , 2013, Nature Communications.

[18]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[19]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  G. Guan,et al.  LaMnO3/CdS nanocomposite: A new photocatalyst for hydrogen production from water under visible light irradiation , 2003 .

[21]  H. Kumigashira,et al.  Termination layer dependence of Schottky barrier height for La 0.6 Sr 0.4 MnO 3 / Nb : SrTiO 3 heterojunctions , 2010 .

[22]  D. Morgan,et al.  Oxygen surface exchange kinetics and stability of (La,Sr)2CoO4±δ/La1−xSrxMO3−δ (M = Co and Fe) hetero-interfaces at intermediate temperatures , 2015 .

[23]  Yang Shao-Horn,et al.  Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis , 2015 .

[24]  K. Garrity,et al.  Growth and interfacial properties of epitaxial oxides on semiconductors: ab initio insights , 2012, Journal of Materials Science.

[25]  Kuan-Chang Chiu,et al.  Promising electron field emitters composed of conducting perovskite LaNiO3 shells on ZnO nanorod arrays , 2012 .

[26]  Tam Mayeshiba,et al.  Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures , 2014 .

[27]  J. S. Pan,et al.  Electron emission from SrTiO3-coated silicon-tip arrays , 2007 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[30]  Y. Shao-horn,et al.  Probing LaMO3 Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy , 2015 .

[31]  Piero Pianetta,et al.  Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.

[32]  H. Hosono,et al.  Work function engineering via LaAlO3/SrTiO3polar interfaces , 2011 .

[33]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[34]  Y. Orikasa,et al.  Surface Strontium Segregation of Solid Oxide Fuel Cell Cathodes Proved by In Situ Depth-Resolved X-ray Absorption Spectroscopy , 2014 .

[35]  H. Lu,et al.  Enhanced field emission of silicon tips coated with sol–gel-derived (Ba0.65Sr0.35)TiO3 thin film , 2005 .

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[38]  J. Goodenough,et al.  Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K-edge X-ray Absorption Spectroscopy , 2014 .

[39]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[40]  Y. Shao-horn,et al.  Revealing the atomic structure and strontium distribution in nanometer-thick La0.8Sr0.2CoO3−δ grown on (001)-oriented SrTiO3 , 2014 .

[41]  J. Kilner,et al.  The isotope exchange depth profiling (IEDP) technique using SIMS and LEIS , 2011 .

[42]  G. Kresse,et al.  SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals , 2008 .

[43]  C. Fu,et al.  Structural and electronic properties of BaTiO 3 slabs: Mechanism for surface conduction , 2003 .

[44]  Roman Engel-Herbert,et al.  Highly Conductive SrVO3 as a Bottom Electrode for Functional Perovskite Oxides , 2013, Advanced materials.

[45]  P. A. Duine,et al.  A model system for scandate cathodes , 1997 .

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[47]  D. Morgan,et al.  Ab initio defect energetics of perovskite (001) surfaces for solid oxide fuel cells: A comparative study of LaMn O 3 versus SrTi O 3 and LaAl O 3 , 2015 .

[48]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[49]  M. Onoda,et al.  Metallic properties of perovskite oxide SrVO3 , 1991 .

[50]  T. Venkatesan,et al.  Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale , 2013 .

[51]  T. Tsurumi,et al.  The influence of metal/perovskite-type oxide interfaces on tunability of thin film capacitors , 2010 .

[52]  S. Wilkins,et al.  Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals , 2014 .

[53]  A. Kolpak,et al.  Interface structure and film polarization in epitaxial SrTiO 3 /Si(001) , 2012 .

[54]  Q. X. Jia,et al.  Work function of the mixed-valent manganese perovskites , 2004 .

[55]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[56]  A. Fert,et al.  Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions , 1999, Science.

[57]  John H. Booske,et al.  Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa) , 2008 .

[58]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[59]  Electron Emission Energy Barriers and Stability of Sc2O3 with Adsorbed Ba and Ba–O , 2014, 1607.02090.

[60]  Gang Xiao,et al.  Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films , 1997 .

[61]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[62]  Bilge Yildiz,et al.  Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films. , 2011, Journal of the American Chemical Society.

[63]  I. Tanaka,et al.  Anti‐ferrodistortive‐Like Oxygen‐Octahedron Rotation Induced by the Oxygen Vacancy in Cubic SrTiO3 , 2013, Advanced materials.

[64]  C. Franchini Hybrid functionals applied to perovskites , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[65]  G. Bihlmayer,et al.  The characterization of SrTiO3(001) with MIES, UPS(HeI) and first-principles calculations , 2002 .

[66]  Bilge Yildiz,et al.  Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. , 2013, Journal of the American Chemical Society.

[67]  David S. McPhail,et al.  Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials , 2014 .

[68]  Meilin Liu,et al.  Suppression of Sr surface segregation in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ): a first principles study. , 2013, Physical chemistry chemical physics : PCCP.

[69]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[70]  A. S. Gilmour Principles of Traveling Wave Tubes , 1994 .

[71]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[72]  A. Petric,et al.  Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures , 2001 .

[73]  D. Morgan,et al.  Cation interdiffusion model for enhanced oxygen kinetics at oxide heterostructure interfaces. , 2012, Physical chemistry chemical physics : PCCP.

[74]  D. Morgan,et al.  Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden-Popper Phases and Correlations to First-Principles Descriptors. , 2015, The journal of physical chemistry letters.

[75]  T. Fister,et al.  In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure , 2008 .

[76]  S. Yamanaka,et al.  Physical properties of polycrystalline SrVO3−δ , 2006 .

[77]  S. Jiang,et al.  Application of work function measurements for surface monitoring of oxide electrode materials (La,Sr)(Co,Mn,Fe)O3 , 2001 .