[Papers] Interpretable Convolutional Neural Network Including Attribute Estimation for Image Classification

[1]  Long Lan,et al.  Discriminative Locality Preserving Canonical Correlation Analysis , 2012, CCPR.

[2]  N. Ani Brown Mary,et al.  Classification of Coral Reef Submarine Images and Videos Using a Novel Z with Tilted Z Local Binary Pattern (Z⊕TZLBP) , 2018 .

[3]  Alexander C. Berg,et al.  Runway to Realway: Visual Analysis of Fashion , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[4]  Dejey Dharma,et al.  Coral reef image classification employing Improved LDP for feature extraction , 2017, J. Vis. Commun. Image Represent..

[5]  Yang Wang,et al.  A Discriminative Latent Model of Object Classes and Attributes , 2010, ECCV.

[6]  Guang-Bin Huang,et al.  Extreme learning machine: a new learning scheme of feedforward neural networks , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[7]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[8]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[9]  Haibo Wang,et al.  Supervised Multi-View Canonical Correlation Analysis (sMVCCA): Integrating Histologic and Proteomic Features for Predicting Recurrent Prostate Cancer , 2015, IEEE Transactions on Medical Imaging.

[10]  Hong-Han Shuai,et al.  Garment Detectives: Discovering Clothes and Its Genre in Consumer Photos , 2019, 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR).

[11]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Yiqiang Chen,et al.  Weighted extreme learning machine for imbalance learning , 2013, Neurocomputing.

[15]  Martin Wattenberg,et al.  SmoothGrad: removing noise by adding noise , 2017, ArXiv.

[16]  David A. Forsyth,et al.  Describing objects by their attributes , 2009, CVPR.

[17]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Vinod Nair,et al.  A joint learning framework for attribute models and object descriptions , 2011, 2011 International Conference on Computer Vision.

[19]  Chong-Wah Ngo,et al.  Deep-based Ingredient Recognition for Cooking Recipe Retrieval , 2016, ACM Multimedia.

[20]  Ivan Laptev,et al.  Is object localization for free? - Weakly-supervised learning with convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Sebastián Ventura,et al.  A Tutorial on Multilabel Learning , 2015, ACM Comput. Surv..

[22]  Cordelia Schmid,et al.  Label-Embedding for Attribute-Based Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Xu Zhang,et al.  Feature-level fusion of fingerprint and finger-vein for personal identification , 2012, Pattern Recognit. Lett..

[24]  Larry S. Davis,et al.  Image ranking and retrieval based on multi-attribute queries , 2011, CVPR 2011.

[25]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[26]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[27]  Dejey Dharma,et al.  Coral reef image/video classification employing novel octa-angled pattern for triangular sub region and pulse coupled convolutional neural network (PCCNN) , 2018, Multimedia Tools and Applications.

[28]  Robert P. W. Duin,et al.  Feedforward neural networks with random weights , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[29]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[30]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[31]  Klaus-Robert Müller,et al.  Learning how to explain neural networks: PatternNet and PatternAttribution , 2017, ICLR.

[32]  Huizhong Chen,et al.  Describing Clothing by Semantic Attributes , 2012, ECCV.

[33]  Gang Wang,et al.  Multi-Task CNN Model for Attribute Prediction , 2015, IEEE Transactions on Multimedia.

[34]  Shree K. Nayar,et al.  FaceTracer: A Search Engine for Large Collections of Images with Faces , 2008, ECCV.

[35]  Gang Wang,et al.  Joint learning of visual attributes, object classes and visual saliency , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[36]  Matthieu Cord,et al.  WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[38]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[39]  Ivan Laptev,et al.  Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Cordelia Schmid,et al.  Combining attributes and Fisher vectors for efficient image retrieval , 2011, CVPR 2011.

[41]  Wen-Huang Cheng,et al.  Learning and Recognition of Clothing Genres From Full-Body Images , 2018, IEEE Transactions on Cybernetics.

[42]  Allan Aasbjerg Nielsen,et al.  Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data , 2002, IEEE Trans. Image Process..

[43]  Andrew Zisserman,et al.  Learning Visual Attributes , 2007, NIPS.

[44]  Yu-Chiang Frank Wang,et al.  Heterogeneous Domain Adaptation and Classification by Exploiting the Correlation Subspace , 2014, IEEE Transactions on Image Processing.