Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

[1]  Hua Zhu,et al.  Triggers and cues that activate antibiotic production by actinomycetes , 2014, Journal of Industrial Microbiology & Biotechnology.

[2]  Satoshi Omura,et al.  Genome mining of the Streptomycesavermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters , 2014, Journal of Industrial Microbiology & Biotechnology.

[3]  Neil L. Kelleher,et al.  Strain-specific proteogenomics accelerates the discovery of natural products via their biosynthetic pathways , 2014, Journal of Industrial Microbiology & Biotechnology.

[4]  Dennis Claessen,et al.  Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies , 2014, Nature Reviews Microbiology.

[5]  Bradley S Moore,et al.  Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules , 2013, Proceedings of the National Academy of Sciences.

[6]  M. Metsä-Ketelä,et al.  Biosynthesis of pyranonaphthoquinone polyketides reveals diverse strategies for enzymatic carbon-carbon bond formation. , 2013, Current opinion in chemical biology.

[7]  G. Niu,et al.  Assembly and features of secondary metabolite biosynthetic gene clusters in Streptomyces ansochromogenes , 2013, Science China Life Sciences.

[8]  Paula Y. Calle,et al.  Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products , 2013, Proceedings of the National Academy of Sciences.

[9]  Jean-Luc Pernodet,et al.  The Genome Sequence of Streptomyces lividans 66 Reveals a Novel tRNA-Dependent Peptide Biosynthetic System within a Metal-Related Genomic Island , 2013, Genome biology and evolution.

[10]  Micheal C. Wilson,et al.  Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. , 2013, Chemistry & biology.

[11]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[12]  M. Metsä-Ketelä,et al.  Biosynthetic conclusions from the functional dissection of oxygenases for biosynthesis of actinorhodin and related Streptomyces antibiotics. , 2013, Chemistry & biology.

[13]  Junko Hashimoto,et al.  Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. , 2013, ACS synthetic biology.

[14]  G. V. van Wezel,et al.  The ROK Family Regulator Rok7B7 Pleiotropically Affects Xylose Utilization, Carbon Catabolite Repression, and Antibiotic Production in Streptomyces coelicolor , 2013, Journal of bacteriology.

[15]  Mikael R. Andersen,et al.  Accurate prediction of secondary metabolite gene clusters in filamentous fungi , 2012, Proceedings of the National Academy of Sciences.

[16]  G. V. van Wezel,et al.  Identification of glucose kinase‐dependent and ‐independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics , 2012, Molecular microbiology.

[17]  G. V. van Wezel,et al.  Unsuspected control of siderophore production by N-acetylglucosamine in streptomycetes. , 2012, Environmental microbiology reports.

[18]  Cory Ozimok,et al.  Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. , 2012, Chemistry & biology.

[19]  Salvatore Cappadona,et al.  Applications of stable isotope dimethyl labeling in quantitative proteomics , 2012, Analytical and Bioanalytical Chemistry.

[20]  Xudong Qu,et al.  Transcriptome mining of active biosynthetic pathways and their associated products in Streptomyces flaveolus. , 2011, Angewandte Chemie.

[21]  Zhong Wang,et al.  Next-generation transcriptome assembly , 2011, Nature Reviews Genetics.

[22]  Pieter C. Dorrestein,et al.  A mass spectrometry-guided genome mining approach for natural product peptidogenomics , 2011, Nature chemical biology.

[23]  H. Sahl,et al.  Expression of the Lantibiotic Mersacidin in Bacillus amyloliquefaciens FZB42 , 2011, PloS one.

[24]  Gilles P van Wezel,et al.  The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. , 2011, Natural product reports.

[25]  Daniel W. Udwary,et al.  Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses , 2011, Applied and Environmental Microbiology.

[26]  M. Bibb,et al.  Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides , 2010, Proceedings of the National Academy of Sciences.

[27]  H. Overkleeft,et al.  Activity-based profiling reveals reactivity of the murine thymoproteasome-specific subunit beta5t. , 2010, Chemistry & biology.

[28]  Sergio Sánchez,et al.  Carbon source regulation of antibiotic production , 2010, The Journal of Antibiotics.

[29]  U. Keller,et al.  The Actinomycin Biosynthetic Gene Cluster of Streptomyces chrysomallus: a Genetic Hall of Mirrors for Synthesis of a Molecule with Mirror Symmetry , 2010, Journal of bacteriology.

[30]  Y. Choi,et al.  NMR-based metabolomic analysis of plants , 2010, Nature Protocols.

[31]  M. Mann,et al.  MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. , 2010, Journal of proteome research.

[32]  B. Murray,et al.  Antibiotic-resistant bugs in the 21st century--a clinical super-challenge. , 2009, The New England journal of medicine.

[33]  Timothy L. Foley,et al.  An orthogonal active site identification system (OASIS) for proteomic profiling of natural product biosynthesis. , 2009, ACS chemical biology.

[34]  N. Kelleher,et al.  A Proteomics Approach to Discovery of Natural Products and Their Biosynthetic Pathways , 2009, Nature Biotechnology.

[35]  I. Chopra,et al.  Dissecting Structural and Functional Diversity of the Lantibiotic Mersacidin , 2009, Chemistry & biology.

[36]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[37]  M. Marahiel,et al.  Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. , 2008, Journal of the American Chemical Society.

[38]  G. V. van Wezel,et al.  Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces , 2008, EMBO reports.

[39]  L. Rice Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. , 2008, The Journal of infectious diseases.

[40]  G. Challis,et al.  Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. , 2008, Chemistry & biology.

[41]  J. Willey,et al.  Lantibiotics: peptides of diverse structure and function. , 2007, Annual review of microbiology.

[42]  C. Huber,et al.  Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. , 2006, Journal of proteome research.

[43]  H. Nothaft,et al.  The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR‐family regulator DasR and links N‐acetylglucosamine metabolism to the control of development , 2006, Molecular microbiology.

[44]  Ben Shen,et al.  Microbial genomics for the improvement of natural product discovery. , 2006, Current opinion in microbiology.

[45]  Sylvie Lautru,et al.  Discovery of a new peptide natural product by Streptomyces coelicolor genome mining , 2005, Nature chemical biology.

[46]  G. Challis,et al.  Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. , 2004, Journal of the American Chemical Society.

[47]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[48]  Gregory L. Challis,et al.  Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Ozawa,et al.  Structure and biosynthetic implication of (S)-NHAB, a novel shunt product, from a disruptant of the actVI-ORFA gene for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) , 2003 .

[50]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[51]  F. Malpartida,et al.  A polyketide biosynthetic gene cluster from Streptomyces antibioticus includes a LysR-type transcriptional regulator. , 2001, Microbiology.

[52]  G. Bierbaum,et al.  Biosynthesis of the Lantibiotic Mersacidin: Organization of a Type B Lantibiotic Gene Cluster , 2000, Applied and Environmental Microbiology.

[53]  D. Hopwood,et al.  Genetic Contributions to Understanding Polyketide Synthases. , 1997, Chemical reviews.

[54]  D. Hopwood,et al.  Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). , 1985, Journal of general microbiology.

[55]  Reinout Raijmakers,et al.  Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics , 2009, Nature Protocols.

[56]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[57]  D. Hopwood,et al.  Streptomyces in nature and medicine : the antibiotic makers , 2007 .

[58]  T. Kieser Practical streptomyces genetics , 2000 .

[59]  M. Bibb,et al.  Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. , 1995, Biotechnology.