A Study on Hand Region Detection for Kinect-Based Hand Shape Recognition

Hand shape recognition is a fundamental technique for implementing natural human-computer interaction. In this paper, we discuss a method for effectively detecting a hand region in Kinect-based hand shape recognition. Since Kinect is a camera that can capture color images and infrared images (or depth images) together, both images can be exploited for the process of detecting a hand region. That is, a hand region can be detected by finding pixels having skin colors or by finding pixels having a specific depth. Therefore, after analyzing the performance of each, we need a method of properly combining both to clearly extract the silhouette of hand region. This is because the hand shape recognition rate depends on the fineness of detected silhouette. Finally, through comparison of hand shape recognition rates resulted from different hand region detection methods in general environments, we propose a high-performance hand region detection method.