Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice

[1]  Jie Li,et al.  Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression , 2022, International journal of molecular medicine.

[2]  Felipe Garcia Quiroz,et al.  Mechanics of a multilayer epithelium instruct tumour architecture and function , 2020, Nature.

[3]  David Haussler,et al.  UCSC Genome Browser enters 20th year , 2019, Nucleic Acids Res..

[4]  Adam L. Maclean,et al.  Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics , 2019, bioRxiv.

[5]  J. Touboul,et al.  Symmetry breaking in the embryonic skin triggers directional and sequential plumage patterning , 2019, PLoS biology.

[6]  C. Chuong,et al.  Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin , 2019, Experimental dermatology.

[7]  C. Chuong,et al.  The tension biology of wound healing , 2019, Experimental dermatology.

[8]  C. Chuong,et al.  Turing patterning with and without a global wave , 2019, PLoS biology.

[9]  Athanasia C. Tzika,et al.  Feather arrays are patterned by interacting signalling and cell density waves , 2019, PLoS biology.

[10]  Mauro J. Muraro,et al.  Dermal Condensate Niche Fate Specification Occurs Prior to Formation and Is Placode Progenitor Dependent. , 2019, Developmental cell.

[11]  Y. Kluger,et al.  Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. , 2019, Developmental cell.

[12]  Andrew L. Krause,et al.  Turing-Hopf patterns on growing domains: The torus and the sphere. , 2019, Journal of theoretical biology.

[13]  Michael Krieg,et al.  Atomic force microscopy-based mechanobiology , 2018, Nature Reviews Physics.

[14]  M. Maden,et al.  Unique behavior of dermal cells from regenerative mammal, the African Spiny Mouse, in response to substrate stiffness. , 2018, Journal of biomechanics.

[15]  K. Green,et al.  Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. , 2018, Cold Spring Harbor perspectives in biology.

[16]  Piul S. Rabbani,et al.  Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing , 2018, Nature Communications.

[17]  D. Geerts,et al.  Harmine, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor induces caspase-mediated apoptosis in neuroblastoma , 2018, Cancer Cell International.

[18]  D. Geerts,et al.  Harmine, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor induces caspase-mediated apoptosis in neuroblastoma , 2018, Cancer Cell International.

[19]  Junichi Ikenouchi,et al.  α-Catenin Controls the Anisotropy of Force Distribution at Cell-Cell Junctions during Collective Cell Migration. , 2018, Cell reports.

[20]  Ming-Jer Tang,et al.  Mechanical forces in skin disorders. , 2018, Journal of dermatological science.

[21]  M. Piel,et al.  Forcing Entry into the Nucleus. , 2017, Developmental cell.

[22]  Cliff B. Jones The Turing Guide , 2017, Formal Aspects of Computing.

[23]  J. Engh,et al.  A First-in-Class TWIST1 Inhibitor with Activity in Oncogene-Driven Lung Cancer , 2017, Molecular Cancer Research.

[24]  Amy E. Shyer,et al.  Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin , 2017, Science.

[25]  Paolo P. Provenzano,et al.  Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration , 2017, Nature Communications.

[26]  Darren Gilmour,et al.  From morphogen to morphogenesis and back , 2017, Nature.

[27]  S. Hsiao,et al.  TWIST1 Integrates Endothelial Responses to Flow in Vascular Dysfunction and Atherosclerosis , 2016, Circulation research.

[28]  L. Garza,et al.  Interleukin-6 Null Mice Paradoxically Display Increased STAT3 Activity and Wound-Induced Hair Neogenesis. , 2016, The Journal of investigative dermatology.

[29]  M. Tang,et al.  Spatial distribution of filament elasticity determines the migratory behaviors of a cell , 2016, Cell adhesion & migration.

[30]  W. Barbazuk,et al.  Cellular events during scar‐free skin regeneration in the spiny mouse, Acomys , 2016, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[31]  Avi Ma’ayan,et al.  An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin. , 2015, Developmental cell.

[32]  B. Hinz The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. , 2015, Matrix biology : journal of the International Society for Matrix Biology.

[33]  L. Miller,et al.  dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration. , 2015, Cell stem cell.

[34]  Edwin Munro,et al.  A self-organized biomechanical network drives shape changes during tissue morphogenesis , 2015, Nature.

[35]  H. Pasolli,et al.  Wdr1-mediated cell shape dynamics and cortical tension are essential for epidermal planar cell polarity , 2015, Nature Cell Biology.

[36]  Albert C. Chen,et al.  Matrix stiffness drives Epithelial-Mesenchymal Transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway , 2015, Nature Cell Biology.

[37]  Guillaume Charras,et al.  Physical influences of the extracellular environment on cell migration , 2014, Nature Reviews Molecular Cell Biology.

[38]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[39]  M. Maden,et al.  New insights into vertebrate skin regeneration. , 2014, International review of cell and molecular biology.

[40]  J. Issa,et al.  Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition , 2013, Genome Biology.

[41]  S. Millar,et al.  Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding , 2013, Nature Medicine.

[42]  M. Mikkola,et al.  Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. , 2013, Genes & development.

[43]  R. Atit,et al.  Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration , 2012, The Journal of investigative dermatology.

[44]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[45]  C. Yeh,et al.  Module‐based complexity formation: periodic patterning in feathers and hairs , 2013, Wiley interdisciplinary reviews. Developmental biology.

[46]  A. Aplin,et al.  TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. , 2012, Cancer research.

[47]  R. Atit,et al.  Twist1 mediates repression of chondrogenesis by β-catenin to promote cranial bone progenitor specification , 2012, Development.

[48]  Jacob R. Goheen,et al.  Skin shedding and tissue regeneration in African spiny mice (Acomys) , 2012, Nature.

[49]  M. Longaker,et al.  Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling , 2011, Nature Medicine.

[50]  Michael Small,et al.  Dynamics of Biological Systems , 2011 .

[51]  Lucila Ohno-Machado,et al.  Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. , 2011, Cancer research.

[52]  Kakajan Komurov,et al.  Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes , 2010, Proceedings of the National Academy of Sciences.

[53]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[54]  D. C. Lin,et al.  Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models , 2009, Biomechanics and modeling in mechanobiology.

[55]  E. Berger,et al.  Measuring viscoelasticity of soft samples using atomic force microscopy. , 2009, Journal of biomechanical engineering.

[56]  Monal R. Mehta,et al.  Fourier transform-second-harmonic generation imaging of biological tissues. , 2009, Optics express.

[57]  Boris Jerchow,et al.  Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. , 2009, Developmental cell.

[58]  Emmanuel Farge,et al.  Mechanical factors activate ß‐catenin‐dependent oncogene expression in APC1638N/+ mouse colon , 2008, HFSP journal.

[59]  M. Robinson,et al.  Small-sample estimation of negative binomial dispersion, with applications to SAGE data. , 2007, Biostatistics.

[60]  Teodor Gotszalk,et al.  Calibration of atomic force microscope , 2008 .

[61]  Oliver H. Tam,et al.  Generation of a Twist1 conditional null allele in the mouse , 2007, Genesis.

[62]  C. Woodbury,et al.  Physiological properties of mouse skin sensory neurons recorded intracellularly in vivo: temperature effects on somal membrane properties. , 2007, Journal of neurophysiology.

[63]  Mayumi Ito,et al.  Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding , 2007, Nature.

[64]  P. Maini,et al.  The Turing Model Comes of Molecular Age , 2006, Science.

[65]  P. Maini,et al.  Distinct mechanisms underlie pattern formation in the skin and skin appendages. , 2006, Birth defects research. Part C, Embryo today : reviews.

[66]  P. Maini,et al.  Developmental biology. The Turing model comes of molecular age. , 2006, Science.

[67]  D. Briggs,et al.  An Evolutionary Perspective , 2004, J. Decis. Syst..

[68]  Lin Chang-min,et al.  Beta-catenin controls hair follicle morphogenesis and stem cell differentiation , 2004 .

[69]  Wei-Min Shen,et al.  Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. , 2004, The International journal of developmental biology.

[70]  W. Hornebeck,et al.  Improved gelatinase a selectivity by novel zinc binding groups containing galardin derivatives. , 2003, Bioorganic & medicinal chemistry letters.

[71]  Guy Cox,et al.  3-dimensional imaging of collagen using second harmonic generation. , 2003, Journal of structural biology.

[72]  S. Millar,et al.  WNT signals are required for the initiation of hair follicle development. , 2002, Developmental cell.

[73]  W. Birchmeier,et al.  β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin , 2001, Cell.

[74]  L Wolpert,et al.  Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. , 1998, Developmental biology.

[75]  H. Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[76]  R. Clark,et al.  Wound repair in the context of extracellular matrix. , 1994, Current opinion in cell biology.

[77]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[78]  A. Turing,et al.  The chemical basis of morphogenesis. 1953. , 1990, Bulletin of mathematical biology.

[79]  G. Oster,et al.  Mechanical aspects of mesenchymal morphogenesis. , 1983, Journal of embryology and experimental morphology.

[80]  G. Mikhail HAIR NEOGENESIS IN RAT SKIN. , 1963, Archives of dermatology.

[81]  A. Lyne,et al.  Formation of New Wool Follicles in the Adult Sheep , 1960, Nature.

[82]  R. Billingham,et al.  Incomplete Wound Contracture and the Phenomenon of Hair Neogenesis in Rabbits' Skin , 1956, Nature.

[83]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[84]  J. Hamilton,et al.  REGENERATION AND RATE OF GROWTH OF HAIRS IN MAN , 1951, Annals of the New York Academy of Sciences.