A boundary element formulation for design sensitivities in materially nonlinear problems

SummaryThis paper presents a formulation for the determination of design sensitivities for shape optimization in materially nonlinear problems. This approach is based on direct differentiation (DDA) of the relevant boundary element method (BEM) formulation of the problem. It combines the accuracy advantages of the BEM without the difficulty of dealing with strongly singular kernels. This approach provides a new avenue towards efficient shape optimization of small strain elastic-viscoplastic and elastic-plastic problems.