A review of phase change material and performance enhancement method for latent heat storage system

Abstract Latent heat storage (LHS) is considered as the most promising technique for thermal energy storage, due to its high energy storage density and nearly constant working temperature. However, the lower thermal conductivity of the phase change material (PCM) used in LHS system seriously weakens thermal energy charging and discharging rates. In order to improve the thermal performance of LHS system, a lot of research on performance enhancement have been carried out. This review paper will concern on the development of PCMs and performance enhancement methods for LHS system in the last decade. The available enhancement methods can be classified into three categories: using high thermal conductivity additives and porous media to enhance PCM thermal conductivity, using finned tubes and encapsulated PCMs to extend heat transfer surface, using multistage or cascaded LHS technique and thermodynamic optimization to improving the heat transfer uniformity. The comparative reviews on PCMs, corresponding performance enhancement methods and their characteristics are presented in present paper. That will help in selecting reliable PCMs and matching suitable performance enhancement method to achieve the best thermal performance for PCM based LHS system. In addition, the research gaps in performance enhancement techniques for LHS systems are also discussed and some recommendations for future research are proposed.

[1]  Zhishen Wu,et al.  Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material , 2014 .

[2]  Abhijit Date,et al.  Performance of suspended finned heat pipes in high-temperature latent heat thermal energy storage , 2015 .

[3]  T. Akiyama,et al.  Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage , 2016 .

[4]  Nasiru I. Ibrahim,et al.  Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review , 2017 .

[5]  A. Sari,et al.  Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage , 2014 .

[6]  Zhenyu Liu,et al.  Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage , 2013 .

[7]  Jiangfeng Guo,et al.  The heat transfer mechanism study of three-tank latent heat storage system based on entransy theory , 2016 .

[8]  Peijun Ji,et al.  Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes , 2012 .

[9]  R. Velraj,et al.  Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system – An experimental study , 2015 .

[10]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[11]  Gang Li Energy and exergy performance assessments for latent heat thermal energy storage systems , 2015 .

[12]  Yong Tae Kang,et al.  Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application , 2014 .

[13]  Nabeel S. Dhaidan,et al.  Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: A review , 2017 .

[14]  Ibrahim Dincer,et al.  An approach to entropy analysis of a latent heat storage module , 2008 .

[15]  Yajuan Zhong,et al.  Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage , 2010 .

[16]  Daniel Lager,et al.  Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM , 2016 .

[17]  Ya-Ling He,et al.  Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material , 2015 .

[18]  M. Romero,et al.  Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material , 2014 .

[19]  Luisa F. Cabeza,et al.  Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage , 2015 .

[20]  Marc A. Rosen,et al.  Thermal performance of a multiple PCM thermal storage unit for free cooling , 2013 .

[21]  E. Stefanakos,et al.  Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems , 2015 .

[22]  Changying Zhao,et al.  Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization , 2015 .

[23]  P. Zhang,et al.  Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage , 2011 .

[24]  Gennady Ziskind,et al.  Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit , 2016 .

[25]  Markus Eck,et al.  Techno-economic heat transfer optimization of large scale latent heat energy storage systems in solar thermal power plants , 2016 .

[26]  K. Sopian,et al.  Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers , 2013 .

[27]  Wenhua Yu,et al.  Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants , 2014 .

[28]  Ya-Ling He,et al.  Exergy analysis and optimization of charging–discharging processes of latent heat thermal energy storage system with three phase change materials , 2016 .

[29]  Chao Xu,et al.  Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules , 2016 .

[30]  Yajun Lv,et al.  Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material , 2016 .

[31]  Bai Song,et al.  Robustness in the volume-to-point heat conduction optimization problem , 2011 .

[32]  Hanxue Sun,et al.  Graphene–nickel/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage , 2015 .

[33]  G. Schmitz,et al.  Optimization of a composite latent heat storage (CLHS) with non-uniform heat fluxes using a genetic algorithm , 2016 .

[34]  Teuku Meurah Indra Mahlia,et al.  Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage , 2014 .

[35]  Sandip K. Saha,et al.  Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant , 2016 .

[36]  T. Teng,et al.  Performance assessment of heat storage by phase change materials containing MWCNTs and graphite , 2013 .

[37]  Amir Faghri,et al.  Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications , 2012 .

[38]  Amir Faghri,et al.  Exergy analysis of latent heat thermal energy storage for solar power generation accounting for constraints imposed by long-term operation and the solar day , 2013 .

[39]  S. Tiari,et al.  Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material , 2015 .

[40]  Ya-Ling He,et al.  Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube , 2015 .

[41]  Elisa Guelpa,et al.  Entropy generation analysis for the design improvement of a latent heat storage system , 2013 .

[42]  Hao Peng,et al.  Thermal investigation of PCM-based high temperature thermal energy storage in packed bed , 2014 .

[43]  R. K. Sharma,et al.  Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM) , 2016 .

[44]  A. Sari,et al.  Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications , 2015 .

[45]  R. Bahrampoury,et al.  Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems , 2015 .

[46]  Wenhua Yu,et al.  Analysis of a graphite foam–NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power ☆ , 2015 .

[47]  Li Jia,et al.  Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery , 2015 .

[48]  XinGang Liang,et al.  Entransy—A physical quantity describing heat transfer ability , 2007 .

[49]  Ming Fang,et al.  Effects of different multiple PCMs on the performance of a latent thermal energy storage system , 2007 .

[50]  Manish K. Rathod,et al.  Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins , 2015 .

[51]  Mingtian Xu,et al.  The Application of Entransy Dissipation Theory in Optimization Design of Heat Exchanger , 2012 .

[52]  Ruzhu Wang,et al.  Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes , 2013 .

[53]  Dominic Groulx,et al.  Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging , 2014 .

[54]  Huijin Xu,et al.  Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method , 2016 .

[55]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[56]  Haiting Wei,et al.  Preparation of stearic acid/modified expanded vermiculite composite phase change material with simultaneously enhanced thermal conductivity and latent heat , 2016 .

[57]  Giampaolo Manfrida,et al.  Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle , 2016 .

[58]  Y. Tao,et al.  Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material , 2016 .

[59]  K. Nithyanandam,et al.  Design of a latent thermal energy storage system with embedded heat pipes , 2014 .

[60]  Philip D. Myers,et al.  Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer , 2016 .

[61]  Tarik Kousksou,et al.  Second law analysis of latent thermal storage for solar system , 2007 .

[62]  Zhaowen Huang,et al.  Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material , 2014 .

[63]  Muhammad M. Rahman,et al.  Comparison between the single-PCM and multi-PCM thermal energy storage design , 2014 .

[64]  V. Carey,et al.  Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit , 2016 .

[65]  M. E. Navarro,et al.  Thermal conductivity enhancement of recycled high density polyethylene as a storage media for latent heat thermal energy storage , 2016 .

[66]  R. Pitchumani,et al.  Analysis and optimization of a latent thermal energy storage system with embedded heat pipes , 2011 .

[67]  Ya-Ling He,et al.  Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material , 2015 .

[68]  Na Li,et al.  Heat transfer enhancement of phase change composite material: Copper foam/paraffin , 2016 .

[69]  C. A. Infante Ferreira,et al.  Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications , 2014 .

[70]  Ruzhu Wang,et al.  High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage , 2016 .

[71]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[72]  L. W. Wang,et al.  Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage) , 2014 .

[73]  S. C. Solanki,et al.  An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation , 2009 .

[74]  A. Sari,et al.  Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage , 2008 .

[75]  A. Sari,et al.  Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties , 2014 .

[76]  Ya-Ling He,et al.  Numerical study on performance of molten salt phase change thermal energy storage system with enhanced tubes , 2012 .

[77]  D. Ganji,et al.  Discharging process expedition of NEPCM in fin-assisted Latent Heat Thermal Energy Storage System , 2016 .

[78]  Huaqing Xie,et al.  Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers , 2010 .

[79]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[80]  Changying Zhao,et al.  Thermal and exergetic analysis of Metal Foam-enhanced Cascaded Thermal Energy Storage (MF-CTES) , 2013 .

[81]  Yajuan Zhong,et al.  Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage , 2013 .

[82]  J. Tóth,et al.  Consolidated microcapsules with double alginate shell containing paraffin for latent heat storage , 2015 .

[83]  Songgang Qiu,et al.  Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes , 2015 .

[84]  Changying Zhao,et al.  Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model , 2016 .

[85]  K. Nithyanandam,et al.  Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power , 2014 .

[86]  Dongliang Zhao,et al.  Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application , 2015 .

[87]  XueTao Cheng,et al.  Entransy flux of thermal radiation and its application to enclosures with opaque surfaces , 2011 .

[88]  Wei Wang,et al.  Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials , 2013 .

[89]  Ming Li,et al.  Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage , 2014 .

[90]  L. Drzal,et al.  High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets , 2009 .

[91]  R. Pitz-Paal,et al.  Cascaded latent heat storage for parabolic trough solar power plants , 2007 .

[92]  Romeu Vicente,et al.  Phase change materials and carbon nanostructures for thermal energy storage: A literature review , 2017 .

[93]  Mahboobe Mahdavi,et al.  Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material , 2016 .

[94]  Ya-Ling He,et al.  Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate , 2016 .

[95]  Y. B. Tao,et al.  Numerical study on performance enhancement of shell-and-tube latent heat storage unit , 2015 .

[96]  Noel León,et al.  High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques , 2013 .

[97]  Zhengguo Zhang,et al.  Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material , 2016 .

[98]  Alparslan Oztekin,et al.  Encapsulated phase change materials for energy storage – Characterization by calorimetry , 2013 .

[99]  Zhenjun Ma,et al.  Nano-enhanced phase change materials for improved building performance , 2016 .

[100]  Jakob Berg Johansen,et al.  Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling , 2016 .

[101]  Manuel Romero,et al.  Numerical and experimental studies on heat transfer characteristics of thermal energy storage system packed with molten salt PCM capsules , 2015 .

[102]  Alparslan Oztekin,et al.  Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications , 2015 .

[103]  Wasim Saman,et al.  Performance enhancement of high temperature latent heat thermal storage systems using heat pipes with and without fins for concentrating solar thermal power plants , 2016 .

[104]  S. D. Pohekar,et al.  Performance enhancement in latent heat thermal storage system: A review , 2009 .

[105]  Ahmet Sarı,et al.  Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell , 2014 .

[106]  Min Li A nano-graphite/paraffin phase change material with high thermal conductivity , 2013 .

[107]  Y. Varol,et al.  Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector , 2008 .

[108]  Viktoria Martin,et al.  Multistage latent heat cold thermal energy storage design analysis , 2013 .

[109]  R. Seeniraj,et al.  Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs , 2008 .

[110]  T. D. Dao,et al.  Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance , 2015 .

[111]  Kihyung Lee,et al.  Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger , 2014 .

[112]  K. Cen,et al.  An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage , 2016 .

[113]  A. Akbarzadeh,et al.  A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units , 2014 .

[114]  Wenhua Yu,et al.  Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system , 2016 .

[115]  W. Tao,et al.  Performance optimization of two-stage latent heat storage unit based on entransy theory , 2014 .

[116]  Peng Zhang,et al.  Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage , 2015 .

[117]  A. Babapoor,et al.  Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization , 2015 .

[118]  D. Groulx,et al.  Experimental investigations of a latent heat energy storage unit using finned tubes , 2016 .

[119]  Ahmet Sarı,et al.  Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage , 2014 .

[120]  Ruzhu Wang,et al.  Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application , 2014 .

[121]  N. Lakshmi Narasimhan,et al.  Numerical studies on the performance enhancement of an encapsulated thermal storage unit , 2014 .