On the Scalability of Description Logic Instance Retrieval

Practical description logic systems play an ever-growing role for knowledge representation and reasoning research even in distributed environments. In particular, the ontology layer of the often-discussed semantic web is based on description logics (DLs) and defines important challenges for current system implementations. The article introduces and evaluates optimization techniques for the instance retrieval problem w.r.t. the description logic $\mathcal{SHIQ}(\mathcal{D}_{n})^{-}$, which covers large parts of the Web Ontology Language (OWL). We demonstrate that sound and complete query engines for OWL-DL can be built for practically significant query classes. Experience with ontologies derived from database content has shown that it is often necessary to effectively solve instance retrieval problems with respect to huge amounts of data descriptions that make up major parts of ontologies. We present and analyze the main results about how to address this kind of scalability problem.

[1]  Michael Wessel,et al.  Flexible software architectures for ontology-based information systems , 2009, J. Appl. Log..

[2]  Ian Horrocks,et al.  Reasoning with Axioms: Theory and Practice , 2000, KR.

[3]  Günther Specht,et al.  Storing and Querying Ontologies in Logic Databases , 2003, SWDB.

[4]  Bernhard Nebel,et al.  An Empirical Analysis of Optimization Techniques for Terminological Representation Systems, or Making KRIS Get a Move On , 1992, KR.

[5]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[6]  Thorsten Liebig,et al.  Real-World Reasoning with OWL , 2007, ESWC.

[7]  Xiao Su,et al.  Semantic web infrastructure for fungal enzyme biotechnologists , 2006, J. Web Semant..

[8]  Boris Motik,et al.  A Comparison of Reasoning Techniques for Querying Large Description Logic ABoxes , 2006, LPAR.

[9]  Diego Calvanese,et al.  QuOnto: Querying Ontologies , 2005, AAAI.

[10]  Ian Horrocks,et al.  Description Logics as Ontology Languages for the Semantic Web , 2005, Mechanizing Mathematical Reasoning.

[11]  Alexander Borgida,et al.  On the Relative Expressiveness of Description Logics and Predicate Logics , 1996, Artif. Intell..

[12]  Edith Schonberg,et al.  The Summary Abox: Cutting Ontologies Down to Size , 2006, SEMWEB.

[13]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[14]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[15]  Ian Horrocks,et al.  Handling Cyclic Conjunctive Queries , 2005, Description Logics.

[16]  Ian Horrocks,et al.  A Conjunctive Query Language for Description Logic Aboxes , 2000, AAAI/IAAI.

[17]  Ian Horrocks,et al.  OWL-QL - a language for deductive query answering on the Semantic Web , 2004, J. Web Semant..

[18]  Volker Haarslev,et al.  High Performance Absorption Algorithms for Terminological Reasoning , 2006, Description Logics.

[19]  Franz Baader,et al.  An Overview of Tableau Algorithms for Description Logics , 2001, Stud Logica.

[20]  Francesco M. Donini,et al.  Exptime Tableaux for ALC , 2000, Description Logics.

[21]  Jeff Heflin,et al.  An Evaluation of Knowledge Base Systems for Large OWL Datasets , 2004, SEMWEB.

[22]  Volker Haarslev,et al.  An Ontology-Based Approach to Software Comprehension - Reasoning about Security Concerns , 2006, 30th Annual International Computer Software and Applications Conference (COMPSAC'06).

[23]  Volker Haarslev,et al.  The Description Logic ALCNHR+ Extended with Concrete Domains: A Practically Motivated Approach , 2000, IJCAR.

[24]  Volker Haarslev,et al.  Towards Efficient Reasoning for Description Logics with Inverse Roles , 2005, Description Logics.

[25]  Volker Haarslev,et al.  Consistency Testing: The RACE Experience , 2000, TABLEAUX.

[26]  Ian Horrocks,et al.  Conjunctive Query Answering for the Description Logic SHIQ , 2007, IJCAI.

[27]  Volker Haarslev,et al.  RACER System Description , 2001, IJCAR.

[28]  Andrew K. Miller,et al.  Ontology Query Languages for the Semantic Web: A Performance Evaluation , 2005 .

[29]  Ulrike Sattler,et al.  BDD-Based Decision Procedures for K , 2002, CADE.

[30]  J. Heflin,et al.  A Scalable Approach for Partitioning OWL Knowledge Bases , 2006 .

[31]  Birte Glimm Query Answering Systems in the Semantic Web , 2004 .

[32]  Ian Horrocks,et al.  Optimising Tableaux Decision Procedures For Description Logics , 1997 .

[33]  Volker Haarslev,et al.  Tableau Caching for Description Logics with Inverse and Transitive Roles , 2006, Description Logics.

[34]  Li Ma,et al.  Towards a Complete OWL Ontology Benchmark , 2006, ESWC.

[35]  Gregory Butler,et al.  The FungalWeb Ontology: Semantic Web Challenges in Bioinformatics and Genomics , 2005, SEMWEB.

[36]  Diego Calvanese,et al.  Data Complexity of Query Answering in Description Logics , 2006, Description Logics.

[37]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[38]  Alexander Borgida,et al.  Loading data into description reasoners , 1993, SIGMOD Conference.

[39]  Bernhard Nebel,et al.  Reasoning and Revision in Hybrid Representation Systems , 1990, Lecture Notes in Computer Science.

[40]  Edith Schonberg,et al.  Scalable Semantic Retrieval through Summarization and Refinement , 2007, AAAI.

[41]  Boris Motik,et al.  Optimizing Query Answering in Description Logics using Disjunctive Deductive Databases , 2003, KRDB.

[42]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[43]  Volker Haarslev,et al.  On the Scalability of Description Logic Instance Retrieval , 2006, KI.

[44]  Ian Horrocks,et al.  Reasoning with Individuals for the Description Logic SHIQ , 2000, CADE.

[45]  Bijan Parsia,et al.  Optimizations for answering conjunctive ABox queries: First results , 2006 .

[46]  Ian Horrocks,et al.  Querying the Semantic Web: A Formal Approach , 2002, SEMWEB.

[47]  Boris Motik,et al.  Reasoning in description logics using resolution and deductive databases , 2006 .

[48]  Jennifer Widom,et al.  Database Systems: The Complete Book , 2001 .

[49]  J. Davenport Editor , 1960 .

[50]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[51]  Volker Haarslev,et al.  An Empirical Evaluation of Optimization Strategies for ABox Reasoning in Expressive Description Logics , 1999, Description Logics.

[52]  Ian Horrocks,et al.  The OWL Instance Store: System Description , 2005, CADE.

[54]  Paolo Bresciani Querying Databases from Description Logics , 1995, KRDB.

[55]  Rajeev Goré,et al.  EXPTIME Tableaux with Global Caching for Description Logics with Transitive Roles, Inverse Roles and Role Hierarchies , 2007, TABLEAUX.

[56]  Diego Calvanese,et al.  Dwq : Esprit Long Term Research Project, No 22469 on the Decidability of Query Containment under Constraints on the Decidability of Query Containment under Constraints , 2022 .

[57]  Volker Haarslev,et al.  A unified ontology-based process model for software maintenance and comprehension , 2006, MoDELS'06.

[58]  Volker Haarslev,et al.  Optimization Techniques for Retrieving Resources Described in OWL/RDF Documents: First Results , 2004, KR.

[59]  Jeff Heflin,et al.  Benchmarking DAML+OIL Repositories , 2003, SEMWEB.

[60]  Volker Haarslev,et al.  Exploiting Pseudo Models for TBox and ABox Reasoning in Expressive Description Logics , 2001, IJCAR.

[61]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[62]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[63]  Michael Wessel,et al.  A High Performance Semantic Web Query Answering Engine , 2005, Description Logics.