An evaluation of the effects of moisture content on the modulus of elasticity of a unidirectional flax fiber composite

Abstract Results of tensile tests on “wet” and “dry” flax yarn are presented and these show the large effect that moisture content (MC) has on flax fiber modulus of elasticity (MOE). These results are compared to others from tensile tests on flax fiber reinforced epoxy unidirectional composites (FFREUC) made from “wet” and “dry” fiber. The homogenized fiber MOEs have been estimated for the composites using the inverse rule of mixture. Fiber MOE appears better for dry fiber (by around 20%) for both the yarn and composite. It is proposed that this difference is the result of changes to the quality of adhesion between matrix and fiber. Adhesion would appear to be better for wet fibers.

[1]  Benjamin M. Wood,et al.  Use of lignin as a compatibiliser in hemp/epoxy composites , 2011 .

[2]  M. Frigione,et al.  Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhesive , 2012 .

[3]  C. Baley Fibres naturelles de renfort pour matériaux composites , 2004, Plastiques et composites.

[4]  J. Gril,et al.  The effects of adsorbed water on dynamic mechanical properties of wood , 1998 .

[5]  Y. Grohens,et al.  Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin , 2006 .

[6]  D. M. Bruce,et al.  Effect of Environmental Relative Humidity and Damage on the Tensile Properties of Flax and Nettle Fibers , 1998 .

[7]  J. Schultz,et al.  Relationship between Work of Adhesion and Equilibrium Interatomic Distance at the Interface , 1996 .

[8]  Bryan Ellis,et al.  Chemistry and technology of epoxy resins , 1992 .

[9]  Y. Kojima,et al.  Properties of cell wall constituents in relation to longitudinal elasticity of wood , 2002, Wood Science and Technology.

[10]  J. Bolton The Potential of Plant Fibres as Crops for Industrial Use , 1995 .

[11]  E. Mäder,et al.  Adhesional pressure as a criterion for interfacial failure in fibrous microcomposites and its determination using a microbond test , 2006 .

[12]  Yingfeng Yu,et al.  Effect of chemical structure on the water sorption of amine-cured epoxy resins , 2009 .

[13]  M. Scandola,et al.  Viscoelastic properties of cellulose derivatives: 1. Cellulose acetate , 1985 .

[14]  P. Davies,et al.  Interfacial bonding of Flax fibre/Poly(L-lactide) bio-composites , 2010 .

[15]  M. Nardin,et al.  Interfacial shear strength in glass-fiber/vinylester-resin composites , 1996 .

[16]  Zhongyi Zhang,et al.  Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites , 2007 .

[17]  J. Cavaillé,et al.  Secondary Mechanical Relaxations in Amorphous Cellulose , 1997 .

[18]  A. Bessadok,et al.  Kinetics of water sorption in flax and PET fibers , 2007 .

[19]  J. Bréard,et al.  Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties , 2009 .

[20]  Jan-Anders E. Månson,et al.  2.16 – Composite Processing and Manufacturing—An Overview , 2000 .

[21]  Anthony Kelly,et al.  Comprehensive composite materials , 1999 .

[22]  Marie-Christine Trouy,et al.  Matériau bois - Structure et caractéristiques , 2012, Les superstructures du bâtiment.

[23]  L. Lebrun,et al.  Effect of chemical treatments on water sorption and mechanical properties of flax fibres. , 2009, Bioresource technology.

[24]  Contribution à l'étude de composites unidirectionnels renforcés par des fibres de lin : relation entre la microstructure de la fibre et ses propriétés mécaniques , 2008 .

[25]  E. Balnois,et al.  Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle , 2012 .

[26]  H. Jacobasch,et al.  Surface, interphase and composite property relations in fibre-reinforced polymers , 1994 .

[27]  C. Bonnafous Analyse multi échelle des mécanismes d'endommagement de composites chanvre/époxy à renforts tissés , 2010 .

[28]  S. Marais,et al.  Pectinase treatments on technical fibres of flax: Effects on water sorption and mechanical properties. , 2012, Carbohydrate polymers.

[29]  Y. Kojima,et al.  Properties of the cell wall constituents in relation to the longitudinal elasticity of wood , 2003, Wood Science and Technology.

[30]  J. Nairn,et al.  Fracture Mechanics Analysis of the Single-Fiber Pull-Out Test and the Microbond Test Including The Efiects of Friction and Thermal Stresses , 2001 .

[31]  H. Hargitai,et al.  Development of HEMP Fiber Reinforced Polypropylene Composites , 2008 .

[32]  A. Apicella,et al.  Sorption modes of water in glassy epoxies , 1984 .

[33]  C. Poilâne,et al.  Traction de fibre unitaire et mesure des déformations en champ complet. Application à la fibre de lin = Full field strain measurement of flax fibre during tensile test , 2009 .

[34]  Z. Cai,et al.  Effect of Moisture Sorption State on Vibrational Properties of Wood , 2012 .

[35]  L. Berglund,et al.  Modeling of cell wall drying stresses in wood , 2002, Wood Science and Technology.

[36]  J. Hearle The fine structure of fibers and crystalline polymers. III. Interpretation of the mechanical properties of fibers , 1963 .

[37]  J. González‐Benito,et al.  Fluorescence labels to monitor water absorption in epoxy resins , 2003 .

[38]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[39]  C. Morvan,et al.  Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. , 2010 .

[40]  B. Madsen,et al.  Hemp yarn reinforced composites - I: Yarn characteristics , 2007 .