Mass Difference for Charged Quarks from Asymptotically Safe Quantum Gravity.

We propose a scenario to retrodict the top and bottom mass and the Abelian gauge coupling from first principles in a microscopic model including quantum gravity. In our approximation, antiscreening quantum-gravity fluctuations induce an asymptotically safe fixed point for the Abelian hypercharge leading to a uniquely fixed infrared value that is observationally viable for a particular choice of microscopic gravitational parameters. The unequal quantum numbers of the top and bottom quark lead to different fixed-point values for the top and bottom Yukawa couplings under the impact of gauge and gravity fluctuations. This results in a dynamically generated mass difference between the two quarks. To work quantitatively, the preferred ratio of electric charges of bottom and top in our approximation lies in close vicinity to the standard-model value of Q_{b}/Q_{t}=-1/2.

[1]  E. Eichten,et al.  Higgs Phenomena in Asymptotically Free Gauge Theories , 1974 .

[2]  D. Jones Two-loop diagrams in Yang-Mills theory , 1974 .

[3]  Holger Gies,et al.  Gravitational Two-Loop Counterterm Is Asymptotically Safe. , 2016, Physical review letters.

[4]  Martin Reuter,et al.  Running gauge coupling in asymptotically safe quantum gravity , 2009, 0910.4938.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[7]  L. Zambelli,et al.  Gravitational corrections to Yukawa systems , 2009, 0904.0938.

[8]  A. Eichhorn,et al.  Nonminimal hints for asymptotic safety , 2017, 1710.03005.

[9]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[10]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[11]  Sergio Gonzalez-Martin,et al.  Asymptotic Solutions in Asymptotic Safety , 2017, Springer Theses.

[12]  J. Oliensis,et al.  Two-loop corrections to the beta function for the Higgs-Yukawa coupling constant , 1982 .

[13]  Jan M. Pawlowski,et al.  Asymptotic freedom of Yang–Mills theory with gravity , 2011, 1101.5552.

[14]  J. Rademacker,et al.  Review of Multibody Charm Analyses , 2016 .

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[17]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[18]  Roberto Percacci,et al.  Renormalization group flow in scalar-tensor theories: I , 2009, 0911.0386.

[19]  W. E. Caswell Asymptotic Behavior of Non-Abelian Gauge Theories to Two-Loop Order , 1974 .

[20]  A. Eichhorn,et al.  Quantum gravity and Standard-Model-like fermions , 2016, 1611.05878.

[21]  Christoph Rahmede,et al.  Asymptotic safety of quantum gravity beyond Ricci scalars , 2017, 1801.00162.

[22]  F. Wilczek,et al.  Gravitational correction to running of gauge couplings. , 2005, Physical review letters.

[23]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[24]  M. Yamada,et al.  Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.

[25]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[26]  C. Wetterich,et al.  Quantum-gravity predictions for the fine-structure constant , 2017, Physics Letters B.

[27]  Astrid Eichhorn,et al.  Viability of quantum-gravity induced ultraviolet completions for matter , 2017, 1705.02342.

[28]  Jan M. Pawlowski,et al.  Curvature dependence of quantum gravity , 2017, 1711.09259.

[29]  B. Pendleton,et al.  Mass and mixing angle predictions from infra-red fixed points , 1981 .

[30]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[31]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[32]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[33]  C. Ross Found , 1869, The Dental register.

[34]  Andreas Rodigast,et al.  Gravitational corrections to Yukawa and phi{4} interactions. , 2009, Physical review letters.

[35]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity with matter , 2017, 1710.04669.

[36]  Astrid Eichhorn,et al.  Status of the Asymptotic Safety Paradigm for Quantum Gravity and Matter , 2017, Foundations of physics.

[37]  Astrid Eichhorn,et al.  An asymptotically safe solution to the U(1) triviality problem , 2017, 1702.07724.

[38]  H. Politzer,et al.  Reliable Perturbative Results for Strong Interactions , 1973 .

[39]  J. M. Pawlowski,et al.  Towards apparent convergence in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[40]  Martin Reuter,et al.  QED coupled to QEG , 2011, 1101.6007.

[41]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[42]  M. T. Vaughn,et al.  Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization , 1983 .

[43]  Benjamin Knorr,et al.  Correlation functions on a curved background , 2017, 1707.01397.

[44]  Masatoshi Yamada,et al.  Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system , 2017, 1703.09033.

[45]  Daniel Becker,et al.  En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.

[46]  Roberto Percacci,et al.  An Introduction to Covariant Quantum Gravity and Asymptotic Safety , 2017 .

[47]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[48]  Astrid Eichhorn,et al.  Top mass from asymptotic safety , 2017, 1707.01107.

[49]  M. Gell-Mann,et al.  QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES , 1954 .

[50]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[51]  Astrid Eichhorn,et al.  Upper bound on the Abelian gauge coupling from asymptotic safety , 2017, 1709.07252.

[52]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[53]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[54]  M. T. Vaughn,et al.  Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings , 1984 .

[55]  Jan M. Pawlowski,et al.  Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.

[56]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[57]  GAUGE HIERARCHY DUE TO STRONG INTERACTIONS , 1981 .

[58]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[59]  C. Hill Quark and lepton masses from renormalization-group fixed points , 1981 .