A Reducibility that Corresponds to Unbalanced Leaf-Language Classes
暂无分享,去创建一个
[1] Mustapha Arfi. Polynomial operations and hierarchies of concatenation (in French) , 1991 .
[2] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[3] Mustapha Arfi. Opérations polynomiales et hiérarchies de concaténation , 1991, Theor. Comput. Sci..
[4] Rahul Tripathi,et al. On the Power of Unambiguity in Alternating Machines , 2005, FCT.
[5] Pascal Weil,et al. Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.
[6] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[7] Thomas Schwentick,et al. On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[8] Heinz Schmitz,et al. The forbidden pattern approach to concatenation hierarchies , 2000 .
[9] David Eppstein,et al. Simultaneous strong separations of probabilistic and unambiguous complexity classes , 1992, Mathematical systems theory.
[10] Janusz A. Brzozowski,et al. Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..
[11] Frank Stephan,et al. On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.
[12] Abraham Ginzburg,et al. About Some Properties of Definite, Reverse-Definite and Related Automata , 1966, IEEE Trans. Electron. Comput..
[13] Riccardo Silvestri,et al. A Characterization of the Leaf Language Classes , 1997, Inf. Process. Lett..
[14] Bernd Borchert. On the Acceptance Power of Regular Languages , 1994, STACS.
[15] Klaus W. Wagner. Leaf Language Classes , 2004, MCU.
[16] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[17] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .
[18] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[19] N. Vereshchagin. RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .
[20] Christian Glaßer,et al. Polylog-Time Reductions Decrease Dot-Depth , 2005, STACS.
[21] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[22] Pierluigi Crescenzi,et al. A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..
[23] Heribert Vollmer,et al. Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..
[24] Celia Wrathall,et al. Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..