The Periodic Solution of Van Der Pol's Equation

We give the periodic solution of the van der Pol equation $\ddot{x} + x = \varepsilon(1 - x^2)\dot{x}$ in the form of a series converging for all values of the damping parameter $\varepsilon$. For $\varepsilon$ small the series solution reduces to a perturbation series in powers of $\varepsilon$ and is obtained from this series, essentially by the analytical continuation method, using a suitable transformation of the parameter. The coefficients of the perturbation series and, by virtue of the simplicity of the transformation proposed, those of the transformed series as well are given in explicit form by recurrent analytical formulae, so that both series can be developed in principle up to any order in $\varepsilon$. Actually, the coefficients in the expansions can be obtained by symbolic computation in exact rational number form up to a very high order, the only limitation being the available computing resources.

[1]  C. M. Andersen,et al.  A hybrid perturbation Galerkin technique with applications to slender body theory , 1989 .

[2]  Joseph B. Keller,et al.  Instability intervals of Hill's equation , 1963 .

[3]  M. L. Cartwright I. Van der Pol’s Equation for Relaxation Oscillations , 1953 .

[4]  J. Shohat,et al.  On Van der Pol's and Related Non‐Linear Differential Equations , 1944 .

[5]  Minoru Urabe Periodic Solution of Van der Pol's Equation with Damping Coefficient $λ=0 (0.2) 1.0$ , 1958 .

[6]  A A Dorodnicyn Asymptotic solution of Van Der Pol's equation , 1953 .

[7]  James F. Geer,et al.  Power Series Expansions for the Frequency and Period of the Limit Cycle of the Van Der Pol Equation , 1982 .

[8]  Richard Bellman,et al.  On perturbation methods involving expansions in terms of a parameter , 1955 .

[9]  James F. Geer,et al.  Perturbation analysis of the limit cycle of the free van der Pol equation , 1984 .

[10]  M. Urabe Periodic Solutions of van der Pol's Equations with Large Damping Coefficient lambda = 0 sim 10 , 1960 .

[11]  S. Finkbeiner Mathematical Aspects of Hodgkin-Huxley Neural Theory , 1988, The Yale Journal of Biology and Medicine.

[12]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[13]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[14]  Donald E. Knuth,et al.  fundamental algorithms , 1969 .

[15]  J. A. Zonneveld,et al.  Periodic solutions of the van der pol equation : (proceedings knaw series a, _6_9(1966), nr 5, indagationes mathematicae, _2_8(1966), p 620-622) , 1966 .

[16]  André Deprit,et al.  Asymptotic representation of the cycle of Van der Pol's equation for small damping coefficients , 1967 .

[17]  N. Wax,et al.  On the Periodic Solution of the van der Pol Equation , 1965 .

[18]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[19]  N. Wax,et al.  On Certain Relaxation Oscillations: Asymptotic Solutions , 1965 .

[20]  C. Di Bello,et al.  Asymptotic formulas in nearly sinusoidal nonlinear oscillators , 1996 .

[21]  J. Grasman,et al.  The method of matched asymptotic expansions for the periodic solution of the van der pol equation , 1973 .