Evolution of homeobox genes

Many homeobox genes encode transcription factors with regulatory roles in animal and plant development. Homeobox genes are found in almost all eukaryotes, and have diversified into 11 gene classes and over 100 gene families in animal evolution, and 10 to 14 gene classes in plants. The largest group in animals is the ANTP class which includes the well‐known Hox genes, plus other genes implicated in development including ParaHox (Cdx, Xlox, Gsx), Evx, Dlx, En, NK4, NK3, Msx, and Nanog. Genomic data suggest that the ANTP class diversified by extensive tandem duplication to generate a large array of genes, including an NK gene cluster and a hypothetical ProtoHox gene cluster that duplicated to generate Hox and ParaHox genes. Expression and functional data suggest that NK, Hox, and ParaHox gene clusters acquired distinct roles in patterning the mesoderm, nervous system, and gut. The PRD class is also diverse and includes Pax2/5/8, Pax3/7, Pax4/6, Gsc, Hesx, Otx, Otp, and Pitx genes. PRD genes are not generally arranged in ancient genomic clusters, although the Dux, Obox, and Rhox gene clusters arose in mammalian evolution as did several non‐clustered PRD genes. Tandem duplication and genome duplication expanded the number of homeobox genes, possibly contributing to the evolution of developmental complexity, but homeobox gene loss must not be ignored. Evolutionary changes to homeobox gene expression have also been documented, including Hox gene expression patterns shifting in concert with segmental diversification in vertebrates and crustaceans, and deletion of a Pitx1 gene enhancer in pelvic‐reduced sticklebacks. WIREs Dev Biol 2013, 2:31–45. doi: 10.1002/wdev.78

[1]  P. Holland MOLECULAR BIOLOGY OF LANCELETS: INSIGHTS INTO DEVELOPMENT AND EVOLUTION , 2013 .

[2]  P. Holland,et al.  Extensive chordate and annelid macrosynteny reveals ancestral homeobox gene organization. , 2012, Molecular biology and evolution.

[3]  P. Holland,et al.  HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology , 2011, Evolution & development.

[4]  P. Holland,et al.  The dynamics of vertebrate homeobox gene evolution: gain and loss of genes in mouse and human lineages , 2011, BMC Evolutionary Biology.

[5]  B Franz Lang,et al.  Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. , 2011, Molecular biology and evolution.

[6]  T. Bürglin,et al.  Homeodomain subtypes and functional diversity. , 2011, Sub-cellular biochemistry.

[7]  J. Hewitt,et al.  A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene , 2010, BMC Evolutionary Biology.

[8]  J. Mullikin,et al.  The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa , 2010, EvoDevo.

[9]  M. Mallo,et al.  Hox genes and regional patterning of the vertebrate body plan. , 2010, Developmental biology.

[10]  M. Wilkinson,et al.  The Rhox genes. , 2010, Reproduction.

[11]  W. Gehring,et al.  Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish , 2010, Proceedings of the National Academy of Sciences.

[12]  G. Steiner,et al.  Conservation of ParaHox genes' function in patterning of the digestive tract of the marine gastropod Gibbula varia , 2010, BMC Developmental Biology.

[13]  M. Boyle,et al.  Clustered Fox genes in lophotrochozoans and the evolution of the bilaterian Fox gene cluster. , 2010, Developmental biology.

[14]  A. Philippakis,et al.  Multi-step control of muscle diversity by Hox proteins in the Drosophila embryo , 2010, Development.

[15]  Jeremy Schmutz,et al.  Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer , 2010, Science.

[16]  P. Holland From genomes to morphology: a view from amphioxus , 2010 .

[17]  B. Schierwater,et al.  The early evolution of Hox genes: a battle of belief? , 2010, Advances in experimental medicine and biology.

[18]  Thomas R. Bürglin,et al.  A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes , 2009, Molecular biology and evolution.

[19]  Meredith E. Protas,et al.  Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology , 2009, Proceedings of the National Academy of Sciences.

[20]  N. Patel,et al.  Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean , 2009, Proceedings of the National Academy of Sciences.

[21]  C. Jubin,et al.  Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes , 2009, BMC Biology.

[22]  S. Piraino,et al.  More constraint on ParaHox than Hox gene families in early metazoan evolution. , 2009, Developmental biology.

[23]  Urs Kloter,et al.  Evolution of the Hox gene complex from an evolutionary ground state. , 2009, Current topics in developmental biology.

[24]  E. Seaver,et al.  Genomic Organization and Expression Demonstrate Spatial and Temporal Hox Gene Colinearity in the Lophotrochozoan Capitella sp. I , 2008, PloS one.

[25]  P. Holland,et al.  Do cnidarians have a ParaHox cluster? Analysis of synteny around a Nematostella homeobox gene cluster , 2008, Evolution & development.

[26]  P. Holland,et al.  Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae , 2008, Development Genes and Evolution.

[27]  P. Holland,et al.  HomeoDB: a database of homeobox gene diversity , 2008, Evolution & development.

[28]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[29]  Nicholas H. Putnam,et al.  The amphioxus genome illuminates vertebrate origins and cephalochordate biology. , 2008, Genome research.

[30]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[31]  P. Holland,et al.  The urbilaterian Super-Hox cluster. , 2008, Trends in genetics : TIG.

[32]  Richard Reinhardt,et al.  A degenerate ParaHox gene cluster in a degenerate vertebrate. , 2007, Molecular biology and evolution.

[33]  Elspeth A Bruford,et al.  Classification and nomenclature of all human homeobox genes , 2007, BMC Biology.

[34]  Axel Meyer,et al.  Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni , 2007, BMC Genomics.

[35]  J. Hewitt,et al.  Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. , 2007, American journal of human genetics.

[36]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[37]  P. Lopez,et al.  Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes , 2007, Evolution & development.

[38]  B. Degnan,et al.  The NK Homeobox Gene Cluster Predates the Origin of Hox Genes , 2007, Current Biology.

[39]  P. Holland,et al.  Annotation, nomenclature and evolution of four novel homeobox genes expressed in the human germ line. , 2007, Gene.

[40]  Krishanu Mukherjee,et al.  Comprehensive Analysis of Animal TALE Homeobox Genes: New Conserved Motifs and Cases of Accelerated Evolution , 2007, Journal of Molecular Evolution.

[41]  M. Manzanares,et al.  Germ cell restricted expression of chick Nanog , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[42]  S. Ben-Dor,et al.  When Do Lasses (Longevity Assurance Genes) Become CerS (Ceramide Synthases)? , 2006, Journal of Biological Chemistry.

[43]  B. Zhu,et al.  Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements , 2006, Nature.

[44]  C. ozouF-cosTaz,et al.  Are Cirripedia hopeful monsters? Cytogenetic approach and evidence for a Hox gene cluster in the cirripede crustacean Sacculina carcini , 2006, Development Genes and Evolution.

[45]  B. Schierwater,et al.  Axial Patterning and Diversification in the Cnidaria Predate the Hox System , 2006, Current Biology.

[46]  C. Amemiya,et al.  An ancient Fox gene cluster in bilaterian animals , 2006, Current Biology.

[47]  B. Schierwater,et al.  A low diversity of ANTP class homeobox genes in Placozoa , 2006, Evolution & development.

[48]  J. Mullikin,et al.  The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis , 2006, Genome Biology.

[49]  Jordi Garcia-Fernàndez,et al.  The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.

[50]  A. Kihara,et al.  Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. , 2005, The Biochemical journal.

[51]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[52]  J. Garcia-Fernández Hox, ParaHox, ProtoHox: facts and guesses , 2005, Heredity.

[53]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[54]  D. Schluter,et al.  Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks , 2004, Nature.

[55]  B. Schierwater,et al.  The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary , 2004, Development Genes and Evolution.

[56]  S. Ashizawa,et al.  PDX-1 and the Pancreas , 2004, Pancreas.

[57]  P. Holland More genes in vertebrates? , 2004, Journal of Structural and Functional Genomics.

[58]  P. Holland,et al.  Chromosomal mapping of ANTP class homeobox genes in amphioxus: piecing together ancestral genomes , 2003, Evolution & development.

[59]  A. Coulson,et al.  Dispersal of NK homeobox gene clusters in amphioxus and humans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Plouhinec,et al.  The mammalian Crx genes are highly divergent representatives of the Otx5 gene family, a gnathostome orthology class of orthodenticle-related homeogenes involved in the differentiation of retinal photoreceptors and circadian entrainment. , 2003, Molecular biology and evolution.

[61]  A. Meyer,et al.  Genome duplication, a trait shared by 22000 species of ray-finned fish. , 2003, Genome research.

[62]  M. Blaxter,et al.  Hox Gene Loss during Dynamic Evolution of the Nematode Cluster , 2003, Current Biology.

[63]  Wei Yan,et al.  Obox, a family of homeobox genes preferentially expressed in germ cells. , 2002, Genomics.

[64]  P. Holland Beyond the Hox: how widespread is homeobox gene clustering? , 2001, Journal of anatomy.

[65]  M. Frasch,et al.  A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[66]  D. Arendt,et al.  Evolution of the bilaterian larval foregut , 2001, Nature.

[67]  D. Birnbaum,et al.  MetaHox gene clusters. , 2000, The Journal of experimental zoology.

[68]  Chen Zhao,et al.  Reprogrammable Recognition Codes in Bicoid Homeodomain-DNA Interaction , 2000, Molecular and Cellular Biology.

[69]  P. Holland,et al.  Evidence for 14 homeobox gene clusters in human genome ancestry , 2000, Current Biology.

[70]  H. Ding,et al.  Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. , 1999, Gene.

[71]  Sean B. Carroll,et al.  Hox genes in brachiopods and priapulids and protostome evolution , 1999, Nature.

[72]  F. Ruddle,et al.  Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Peter W. H. Holland,et al.  MAJOR TRANSITIONS IN ANIMAL EVOLUTION : A DEVELOPMENTAL GENETIC PERSPECTIVE , 1998 .

[74]  R. Ho,et al.  Hox gene expression reveals regionalization along the anteroposterior axis of the zebrafish notochord , 1998, Development Genes and Evolution.

[75]  J. Gibert,et al.  Molecules and the body plan: the Hox genes of Cirripedes (Crustacea). , 1998, Molecular phylogenetics and evolution.

[76]  B. Schierwater,et al.  Homology of Hox genes and the zootype concept in early metazoan evolution. , 1998, Molecular phylogenetics and evolution.

[77]  N. M. Brooke,et al.  The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster , 1998, Nature.

[78]  T. Bürglin,et al.  The PBC domain contains a MEINOX domain: Coevolution of Hox and TALE homeobox genes? , 1998, Development Genes and Evolution.

[79]  T R Bürglin,et al.  Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. , 1997, Nucleic acids research.

[80]  N. Patel,et al.  Crustacean appendage evolution associated with changes in Hox gene expression , 1997, Nature.

[81]  M. Ekker,et al.  The evolution of the vertebrate Dlx gene family. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[82]  B. Hogan,et al.  PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. , 1996, Development.

[83]  Dierk Niessing,et al.  RNA binding and translational suppression by bicoid , 1996, Nature.

[84]  P. Holland,et al.  Hox genes and chordate evolution. , 1996, Developmental biology.

[85]  Craig Nelson,et al.  Hox genes and the evolution of vertebrate axial morphology. , 1995, Development.

[86]  S. Gaunt Conservation in the Hox code during morphological evolution. , 1994, The International journal of developmental biology.

[87]  Jordi Garcia-Fernàndez,et al.  Archetypal organization of the amphioxus Hox gene cluster , 1994, Nature.

[88]  M. Bienz,et al.  Specification of a single cell type by a Drosophila homeotic gene , 1994, Cell.

[89]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[90]  J E Hewitt,et al.  FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. , 1993, Human molecular genetics.

[91]  L. Lundin,et al.  Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. , 1993, Genomics.

[92]  R. Krumlauf,et al.  Mouse Hox genetic functions. , 1993, Current opinion in genetics & development.

[93]  M. Scott,et al.  Downstream of the homeotic genes. , 1992, The New biologist.

[94]  R. Balling,et al.  Variations of cervical vertebrate after expression of a Hox-1.1 transgene in mice , 1990, Cell.

[95]  R. Krumlauf,et al.  The murine and Drosophila homeobox gene complexes have common features of organization and expression , 1989, Cell.

[96]  P. Holland,et al.  Expression of homeo box genes during mouse development: a review. , 1988, Genes & development.

[97]  W. Gehring,et al.  Molecular analysis of the dominant homeotic Antennapedia phenotype , 1987, The EMBO journal.

[98]  R. Garber,et al.  An inversion that disrupts the Antennapedia gene causes abnormal structure and localization of RNAs , 1986, Cell.

[99]  William McGinnis,et al.  Fly and frog homoeo domains show homologies with yeast mating type regulatory proteins , 1984, Nature.

[100]  A. Laughon,et al.  Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding proteins , 1984, Nature.

[101]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.