Monitoring correlated processes with binomial marginals

Few approaches for monitoring autocorrelated attribute data have been proposed in the literature. If the marginal process distribution is binomial, then the binomial AR(1) model as a realistic and well-interpretable process model may be adequate. Based on known and newly derived statistical properties of this model, we shall develop approaches to monitor a binomial AR(1) process, and investigate their performance in a simulation study. A case study demonstrates the applicability of the binomial AR(1) model and of the proposed control charts to problems from statistical process control.